Van 't Hoff and the emergence of Chemical Thermodynamics

Centennial of the first Nobel Prize for Chemistry, 1901-2001

An annotated translation with comments of L'Équilibre chimique dans les systèmes gazeux ou dissous a l'état dilué. Published in 1885 in the Archives Neerlandaises des Sciences exactes et naturelles

Translated and annotated By the Working Committee on Thennodynamics, Section Chemistry in Context Royal Dutch Chemical Society KNCV.

With invited papers

Dedicated to the memory of J.H. van 't Hoff (1852-1912) who was the first to receive a Nobel Prize in Chemistry in 1901, for his work in chemical dynamics and osmotic pressure in solutions.

Dr. W. Hornix Ir. S.H.W.M. Mannaerts Editors

DUP Science / 2001

	TABLE OF CONTENTS	page
Preface 7		
	Notes on the translation	10
	Symbols and units	11
J.H.	van 't Hoff: Chemical equilibrium in dilute gases and solutions	
	[Archives Néerlandaises des Sciences exactes et naturelles,	
	1885 pages 239 - 302]	17
Ι	Introduction The application of thermodynamic principles to solutions by	17 22
1	considering semi-permeable membranes.	
II	Boyle's law in dilute solutions: work produced in an isothermal	27
	reversible process	
III	Gay-Lussac's law for dilute solutions	32
IV	Combination of the laws of Boyle and Gay-Lussac for dilute	36
	solutions. Simplification by using molecular quantities. Pressure of	
	a chemical system at unit concentration.	
V	Law of equilibrium at constant temperature in a dilute state.	39
VI	Law of equilibrium at variable temperature in the diluted state.	47
VII	Determination of the quantity i for substances dissolved in water.	51
VIII IX	Applications. Equilibrium in aqueous solutions. Balation between the equilibrium constant K and the work E that	64 82
IA	Relation between the equilibrium constant K and the work E that the affinity can produce.	02
	References	88
	Keterenees	00
Com	ments	
А	Mathematical structure (S.H.W.M. Mannaerts)	93
В	Equivalent Concentrations (S.H.W.M. Mannaerts)	100
С	Van 't Hoff and the Clapeyron-Clausius 1850 derivation.	104
	(E.P. van Emmerik)	
D	Osmotic pressure and gas pressure (F.N. Hooge)	110
E	The Van 't Hoff factor i (W. Bol)	118
F	Van 't Hoffs law and the van 't Hoff factor. (W.J. Hornix)	122
G	The Van 't Hoff cycle (W. Bol)	126
Η	Van 't Hoffs isothermal cycles and Gibbsian thermodynamics	140
т	(W.J. Hornix)	1.67
Ι	A note on the logical and methodological structure of "Chemical equilibrium" (W.J. Hornix)	167

(table continued on the following page)

TABLE OF CONTENTS (continued)	page
Intermezzo: Stockholm 1901 Van 't Hoff receives the Nobel Prize in Stockholm (E.P. van Emmerik)	171
Invited papers Van 't Hoff and the Transition from Thermochemistry to chemical Thermodynamics. (H. Kragh)	191
Early Chemical Thermodynamics: Its Duality Embodied in Van 't Hoff and Gibbs (A. Kipnis)	212
Van 't Hoff and the Birth of Chemical Dynamics (K.J. Laidler)	243
Van 't Hoff's chemical Affinity: A Reconstruction. (E.P. van Emmerik)	257
J.H. van 't Hoff: His Way to Berlin (R. Zott)	277
Van 't Hoff on Imagination and Genius (R. Root-Bernstein)	295