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PREFACE 

This thesis contains two parts. Chapters 1 - 6 contain an exposition 

of an axiomatisation of classical phenomenological thermodynamics of 

closed systems. The framework of this part will be published in the 

Proceedings of the International Symposium "A Critical review of the 

foundations of relativistic and classical thermodynamics", University 

of Pittsburgh (Pa) 1969 (1). The extension of this axiomatization 

to open systems is prepared in a contribution for the International 

Conference on Thermodynamics, Cardiff, 1970, and will be published in 

the Proceedings of this Conference (2). Tha basic ideas explained 

in the latter article need further development. Thermodynamics of 

open systems falls outside the scope of this thesis, except for 

a few remarks. 

The proposed axiomatization is characterised as follows: 

1 The set of states z. of a system is structured through 
l. 

(a) the existence of "connections", defined as equivalence 

relations, generating the classes of equal temperature and 

generalised forces; 

(b) the existence of "isolations", defined as equivalence 

relations generating the classes of equal entropy, internal 

energy and dimensions; the adiabatic isolation is a simple 

preorder in z .. 
l. 

2 On the basis of accessibility relations for adiabatic isolation 

and for energetic isolation for the composition of systems 

we can define extensive entropy functions S. and internal 
l. 

energy functions Ui. A similar procedure can lead to 

extensive deformation coordinate functions ~i· 



·.· · . 

3 The maximum entropy principle and a minimum energy principle 

in a local formulation, and certain continuity ass umptions 

imply the existence of absolute temperature and absolute 

force functions. By strengthening the extremal principles 

and the assumptions concerning the occupation of phase space, 

it is possible to describe the behaviour of systems in the 

domain of negative absolute temperatures and at the boundaries 

of phase space. 

The original traits of this axiomatization, apart from in ~ · r , ~ 

. ,. .. 

of certain parts of earlier work in the field, mentioned below, are: 

The construction of an extensive internal energy function with 

the help of a system which can be interpreted as a calorimeter 

the measurement of internal energy differences is thus reduced 

to caloric measurements. 

The formulation of the maximum entropy principle as the fundamental 

relationship of the extensive and intensive variables of a thermodynamic 

system. 

The introduction of a minimum internal energy principle which leads 

to the definition of absolute force functions and which establishes 

the independence of thermodynamics of mechanics. 

The analysis of the properties of thermodynamic systems at the 

boundaries of phase space, including a restatement of the third law. 

The second part is a critical analysis of other axiomatisations which 

cover the same field, and which are attempts to develop a theory, 

starting from accessibility relations. Within these limits fall 

the article of G. Falk and H. Jung in the Handbuch der Physik (3), 

R. Giles' Mathematical Foundations of Thermodynamics (4), 

J. L. B. Cooper's article in the Journal of Mathematical Analysis 



and Applications (5) and J. J. Duistermaat's article in Synthese (6). 

L. Tisza's contributions, collected in Generalised Thermod)mmics (7) 

lie outside this frame. In many respects his work starts where my 

wor~ends, with a small overlap in Chapters 5 and 6 of this thesis. 

Similar remarks can be made with respect to P. T. Landsberg's 

Thermodynamics (8), which may be considered as a preparation of 

much work in the field of axi.omatics of thermodynamics, through a 

careful analysis of the presuppositions of the traditional presentations 

of the subject. 

The discussion of the contributions 3 - 6 is undertaken because there 

is certainly a lack of mutual criticism in the field of axiomatisation 

of thermodynamics • . A criticism of the work of Falk and Jung does not 

exist and only Duistermaat gives a more than incidental comment on 

Giles' work. However, Duistermaat's approach is so closely 

related to Giles' that objections against the latter contribution 

hold also for the former. This critical analysis should not be 

considered as negative: the attention given to these books and 

articles is not least intended to express esteem for the valuable 

work in the field delivered by the authors. 
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CHAPTER I INTRODUCTION 

The aim of this introductory chapter is to give an outline 

of the formal theory, as developed in detail in the following 

chapters, to give an interpretation of its primitive terms, 

and to make general remarks about its relationships to the 

traditional presentation of thermodynamics. Traditional 

thermodynamics includes different approaches: ·fue Kelvin­

Clausi us approach, the theory developed by Caratheodory, 

and the Gibbsian approach. It is neither my intention to deny 

the differences in these three presentations, nor to assess 

these differences. I vill refer to "traditional thermodynamics" 

only to clarii"y the physical relevance of the formal structure 

given. 

The outline of the formal theory is given in the form of & set 

theoretical definition of the concept"set 'J... of closed, commensurable, 

thermodynamic systems". In such a definition the primitive teras 

of the formalised theory are enumerated as well as the primitive 

relationships applying to the theory. The axioms of the 

following chapters can thus be considered as a restatement for 

reasons of convenience at a place vhere we actually use those 

propositions. To avoid unnecessary repetitions I will not formulate 

a.11 the axioms explicitly in the set theoretical definition of 

this chapter, but refer to the precise statements in the following 

chapters. Different parts of the definition vill be followed by 

short indications about the results which follow within the formal 

theory from the foregoing statement. I do not inten4 to give 

precise "rules of interpretation" for the primitive terms. This 

would presuppose a sophisticated use of the language of experimental 

physics and of a "meta language" which connects experimental 

physics with our formal theory and neither of the two are sUff'iciently 

specified to :f'ul.fill this task. The remarks about the interpretation 
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o"t the primitive terms are meant as an indication hov the 

statements of the theory can be translated in physical terms, 

and they will make it possible to judge the relevance of the 

formal theory of thermodynamics as a physical science. 

General remarks and notes with respect to the interpretation 

will succeed immediately those parts of the definition to 

which they refer. The formal theory can however be considered 

as self-contained and thus independent of these remarks. To 

distinguish the formal theory proper from other parts of the 

discourse I will separate these parts by horizontal lines. 

Formal parts start and end with the sign A. 

Systems, states. 

A 

A set;(. ot closed, cormnensurable, thermodynamic systems is a 

set;( of sets (or formal systems) I. of elements (states) z. 
1 1 

such that: 

1.1 it z. ,z.-:t.. then z. x z. 4: 0(. 
1 J 1 J 

The set Z. =. lz·, z. ', z." _ l is interpreted as the set of 
1 1 1 l. J 

all possible equilibri\ll\ states of a closed physical system, say 

Gi' the latter being defined through a description in terms o"t 

experimental physics. The interpretation of the cartesian product 

of the sets Z. and a., or the "composition" of the formal systems 
l. J 

Z. and Z., is that it represents the set of all equilibrium states 
1 J 

of the system, consisting of the physical systems G. and G., 
1 J 

combined physically in such a way, that every duplet z. z. can be 
l. J 

considered as an equilibriua state of the canbination, and as the 

conjunati.on of the states z. and z. of G. and G. separately: i.e. 
1 J l. J 

the systems G. and G. are "not connected at all" i.e. "isolated 
l. J 

vith respect to each other." 
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Con_n_e~t_i_o_!l!>_ , thennal and generalized force connectioE_! 

1.2 There exists a 11direct thermal connection", ce, being an equivalence 

relation on U. . z. x z.; Z
1
., ZJ. E ;t 

6 
c '"~ • 

1,J 1 J 

A connection C for the family ';;/.., of sets (formal systems) 

z., Z., --- can be defined generally as a relation on the set 
1 J 

u . . Z. x Z., this being the set of all duplets z. z. which can 
1,J 1 J 1 J 

be formed from the elements (states) of the sets z. E c:;;t. 
1. 

(also included the duplets of identical states z.z.). 
1. 1. 

A relation 

on U .. 
1., J 

Z. x Z. is a subset of this set. A connection 
1. J 

C can be interpreted as the set of equilibrium states z.z. of a 
1 J 

physical combination of the physical systems G. and G. (with 
1. J 

sets of possible equilibrium states z. and Z. respectively) 
1. J 

such that not every duplet of equilibrium states of G. and G. 
1. J 

is also an equilibrium state of the combined system. Thus we 

call two systems connected if not every pair of equilibrium states 

of the two systems separately is an equilibrium state of the 

combination. 

A special class of connections are those connections which 

have the formal structure of an equivalence relation. 

An equivalence relation on u. . z. x z. is a relation esuch that 
1.,J 1. J 

for all zi E Zi, zj E Zj and zk E Zk 

(i) z.z. E e 
1. 1. 

:ireflexivity" 
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(ii} if' z . z . €. e then z . z . r e 
l.J Jl.; 

11 symmetry" 

"transitivity" 

It will. be immediately clear that many ways of' connecting 

physical systems in practical experiment have the properties 

associated with equivalence relations. Usual.l.y these 

properties are considered as self evident and not worthwhile 

mentioning. Only the transitive property ot the thermal 

connection gets a ditterent treatment in traditional 

thermodynamics. 

The set ;t 6 can be interpreted as the set of' closed systems 

f'or which a unique temperature function is defined, i.e. 

systems which have a temperature, and which are not divided by 

adiabatic walls which make it possible to have different 

temperatures in different parts. 

The set ( z. x Z . ) n c6 contains all duplets z. z • ot equal 
l. J l.J 

temperature and is thus the set ot equilibrium states of the 

thermally connected systems Z. and Z • ; sometimes we write for 
l. J 

z. x z. n c
8 

: z. c e) z .• 
l J 1 J 

The statement of the existence of a thermal connection is 

closely related to the introduction of' an empirical temperature 
.de 

function viaYzeroth law. The zeroth law formulates the transitive 

property of the thermal connection. The difference between our 

approach and the zeroth law approach is that we do not use the 

much stronger assumption that the thermal connection relation, 

restricted to the domain Z. x Z. is an analytical function of a 
l. J 

complete set of independent variables of the tvo systems, which 

would necessitate us to introduce deformation - and force­

coordinates, and that we are precise in the formulation of the 

mathematical properties of the thermal connection relation. The 

existence of a real valued empirical temperature function 



will. consequently not be proved, and appears superfluous for 

the derivation of the existence of an absolute temperature 

:function with the desired thermodynamic properties. The thermal 

connection relation decides only whether or not two states are 

in thermal equilibrium (say "have equal temperatures") , an 

order is not established. 

fl 

l.4 There exist "direct generalized force connections", C+k , 

k E: N, where N is a set of integers indicating "different 

kinds" of force connections; C+ being equivalence relations 
k 

on U .. 
l. ,J 

z. x z. ; 
l. J 

z .• z. E 
l. J 

1.5 If Z. ,z. E. ;t.+ , then (Z. x 
l. J k l. 

~. c.;;(. 
k 

z. > n c... €.. ;z... • 
J Tk T)t 

In traditional presentations of thermo~cs force-variables 

are tacitly introduced as acceptable coordinates describing the 

state of a system. The philosophy behind it is presumably that 

a foreknowledge of mechanics, electrostatics, etc. is presupposed 

and that only the thermodynamic concep~ · proper: temperature, 

heat, internal energy and entropy need definition, and that these 

definitions can be given purely in terms of' the presupposed 

disciplines (e.g. the "mechanical definition of heat"). The 

philosophy behind our approach is quite different: it seems 

impossible to reduce thermodynamics to mechanics etc; there are 

necessarily non-mechanical primitive terms in thermodynamics, in 
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this axiomatization "therm.al connection", "adiabatic isolation" 

and"energetic isolation". That the latter concept is 

thermodynamical will be clear it we remind that it leads to 

the definition of an internal energy f'Unction and internal 

energy cannot be identified vith mechanical. energy in case ot 

non mechanical systems. It s ems rthvnile trying to f'ormul.ate 

thermodynamics without foreknowledge of' other parts of' physics, 

and it is perhaps possible to consider mechanics (or at least 

statics) as a special case of thermodynamics (thermostatics), 

namely "thermodynamics" restricted to those systems, which do 

nat contain thermal systems and for which.all pairs of' states 

are reversible adiabatically accessible. This last remark needs 

turther clarification, which however cannot be given here. 

An attempt to present thermodynamics without foreknowledge of 

mechanics forces us to introduce "mechanical." concepts on the 

same level as thermo~c concepts. The force concept can be 

introduced in striking similarity vi th the temperature concept. 

In a first stage ve state the existence ot generalized force 

connections as 4quivalence relations: such a relation does nothing 

more than reply "yes" or "no" to the question whether tvo states 

ot a certain class of systemsare in kth force equilibrium. A real 

valued force t'unction is not defined through it. In a second 

stage ve can define an "absolute force" which can be interpreted 

as the force variable which is traditionally borrowed trom 

:mechanics etc. 

For the description of' all the possible ways in which human 

ingenuity can connect systems and which could be called"torce 

connection" a perhaps unlimjted list of equivalence relations 

has to be drafted. For instance, tvo quantities ot a fluid can 

be connected by means of a movable piston (pressure connection) or 

enclosed in rigid containers each provided with a movable piston, 

which pistons are connected through a shaft or a spring. (Mechanical 

force connections of a different kind). Chemical eel.ls can be 



connected with conducting wires (electromotoric force connectior} 

etc. 

We restrain tram specifications by introducing the concept of 

"generalized forces" and restrict ourselves to those connections 

which can be described as equivalence relations ("direct" 

connections) • The sets :;!.. 4> can be interpreted as the class of 
k 

closed systems for which the connection c
41 

is defined, i.e. for 
k 

which a kth force coordinate exists or can be connected in.a way, 

k, specified in experimental physics, and for which the kth force 

coordinate is uniquevalued. 

The set { z. )<. z.) n C,1. (or z. C<?k> z.) has to be interpreted as 
1 J ~k 1 J 

the set of equilibrium.itates of the systems Z. and Z., connected 
1 J 

with respect to the kth force coordinate. 

Isolations, adiabatic, energetic and dimensional isolations 

!J. 

1.6 There exist for all Z. E.;/.. "adiabatic isolations" (Is). 
1 1 

or ~ . , being simple preorder relations defined on Z. ~ Z. ; 
1 1 1 

Zi E:. ::l.. , and such that "extensivity or metrization axioms for 

entropy" hold (axiom 2.9) 

1.7 There exists an ent•opymeter Z (definition 2.17) and all a 
Z. ~;i.. are S-measurable (definition 2.21) with respect to this 

1 

meter (axiom 2.22) 

This leads to the definition and existence proof 

of a set of extensive or additive entropyf'unctions 

Si C'zi) for the domains zi, zi t..:Z . 
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In traditional thermodynamics isolations are usually defined 

as specified relationships between a system and its environment. 

Many times these definitions take the form of negative propositions; 

e.g. adiabatic isolation is defined as the non existence of thermal 

connections between the system and its enviromnent. This invokes 

the difficulty of the introduction of the environment of a system 

and the inconvenience of definitions in the form of negative 

statements. In case of adiabatic isolation we can get around the 

last by a d~finition of the form "a system is adiabatically 

isolated, if al1 the connections between the system and its 

environment are force connections". But this policy compels us 

to list al1 force connections, also the less obvious "indirect" 

ones, and does not relieve us of the task of defining the 

environment of a system. 

These difficulties do not arise if we define isolations through 

"accessibility relations"• which explain which processes are 

possible under the given isolation (in case of the adiabatic 

isolation) or which states are linked by possible processes (in 

case of the other isolations). The adiabatic isolation has the 

structure of a simple preorder relation. 

A simple preorder on the domain Z. is a relation n on Z.x Z. such 
1 ~ 1 1 

that, for all z.,z.',z.",z. 111 
..t'!:.. z., 

1 1 1 1 ~ 1 

(i) 

(ii) 

(z.z. ) €. /J 
1 1 c; 

(zi 'zi ")E. e or 

reflexivity 

(or both} comparability 

transitivity 

The duplel of states < z. 'z.") whi eh belong to the adiabatic 
1 1 

isolation relation (Is}. must be interpreted as the initial state 
1 
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and final state of a possible adiabatic process. A much simpler 

notation will be the replacement of <z.' z. ''> £ (Is). by 
l. l. l. 

z.' ==> • z. '', or more shortly z."' ~> z:' The omission of the 
l. l. l. l. l. 

index i is allowed because the indices of the states before and 

after the arrow determine already the system for which adiabatic 

isolation is meant. 

The axioms for the simple preorder can thus be rewritten for the 

case of adiabatic isolation as follows: 

(i) z. = > z. 
l. l. 

reflexivity 

z. 
l. 

(ii) z.' => z." or z." -~ z.' (or both) comparability 
l. l. l. l. 

(iii) if. z., => z. ,, 
l. l. 

then z., > z. ,,, 
1. l. 

and z.'' => z.''' 
1. 1. 

transitivity 

This notation has the additional advantage that it is immediately 

clear that z.' => z." is the representation of a possible process. 
l. l. 

We will reserve the notation <z.' z."> to indicate a more general 
l. l. 

"process", impossible or possible. This latter duplet of states must 

be well distinguished from the duplet z.' z.'' which indicates an 
l. 1. 

equilibrium state of the composition z. xz .. 
l. l. 

The metrization axioms explain how the adiabatic isolations => .. k 
l.J 

--- are related to those of compositions of systems z. x Z. x Zk x 
l. J 

of the component systems=>., =>.,=> k" They aim to be sufficient 
l. J 

and necessary conditions (together with the proposition stating the 

existence of a special system, the entropy meter) for the existence 

of entropy functions with additive properties. After this stage this 

approach comes together with that in which the existence of such an 

addjti_ve entropy function is assumed axiomatically. 

(Tisza (7),Callen H. B. Thermodynamics (Wiley N.Y. 1960)) 

The term "possible adiabatic process" needs specification in the light 

of the formal properties of the adiabatic isolation relation. In 

the first place: processes which can be approximated as 
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closely as desired by possible processes will also be ca.l.led 

"possible": thus adiabatically reversible processes are 

possible in both directions. 

In the second place, the :tact that an adiabatic isolation is 

defined also tor the composition Z. >< Z. ot systems Z. and Z. 
l. J l. J 

implies that also all the states ot a composition are canparable: 

thus (\lz.',z.",z.',z.")(z.'z .. 1 ., z."z." or #I z."z.'''~ z.' z.'} 
J. l. J J lJ-YlJ l.J 1 J 

This means that ddiaba.tic isolation ot the composition must be 

understood in a weak sense: the systems G. and G. are together 
l. J 

adiabatically isolated with respect to their joint environment, 

but adiabatic walls between the two systems may be removed 

temporarily. In the third place: the metrization axiom 

('v'z.•, ••• ,z.n) {z.• ••• z.n ~ Permutation of z. 1 ••• z.n) 
l. l. l l l. l. 

implies that we have to allow the use of additional systems, 

which describe cyc:U. processes, within the isolation. E.g. 

consider tvo identical blocks ot copper G1 at a temperature ot 

100° C and G
2 

at at temperature of o° C. The axiom implies 

z1(100°) z2(o) 0 =9 z1(o0
) z2(100,. Such a process is however 

only possible with the help of tor instance a carnet engine. 

The latter property of the adiabatic isolation is more ex:plicitly 

impl;ed in the first metrization a.xian 

('r/ z. !,z.",z.) (z. 1'z. ~ z "z. if:f z.' ~ z.••), 
l 1 J J. J l. J l. J 

vhere z. may be interpreted as the initial and final stake 
J 

ot a cyclic process < z. z. ) • 

For certain systems Z. ,i, ~the adiabatic isolation reduces to 
l 

a symmetric relation: all the statesct' the system are reversibly 

adiabatically accessible. We interpret these systems as "mechanical 

s7stems". The entropy f'Unct1on S.(z.) reduces to an arbitrary 
l. J. 

constant. 



1.8 

(Iu). 
1. 

There exist for all Z. e: t:. 1'energetic isolations", 
1. 

11. 

or (u)., being equivalence relations defined on Z. x Z., 
1 1. 1. 

z. e: -;t., 
1. 

and such that "extensivity or metrization axioms for 

internal energy·' (axiom 3. 3) hold. 

1.9 There exist an energymeter Zv (definition 3.16) and all 

z. e:-;£. are U-measurable (definition 3.19). with respect to this lll.E:!ter 
1. 

This leads to the definition and existence proof of 

a set of extensive or additive internal energy functions 

U. (z.) for the domains Z., z. e: X. 
1. 1. 1. 1. 

We cannot introduce the thermodynamic concept "internal energy" in 

the uaual way via the first law, if we intend to develop 

thermodynamics independent of mechanics. The concept of "work" is 

borrowed from mechanics and a definition is not possible withou~ 

the help of an absolute force function and additive deformation 

coordinates. The solution chosen here is the introduction of 

the primitive concept "energetic isolation" as an equivalence relation 

which explains whether or not two states of a system "have the same 

internal energy". In traditional thermodynamics energetic isolation 

implies adiabatic isolation: thus traditional energetic isolation 

invokes an order in the set of equilibrium states of a system; to 

be precise: a partial preorder with the properties reflexivity and 

transitivity (the cotq>arability of the simple preorder is thus lost.) 

The formal description of the energetic isolation as an equivalence 

relation assumes however symmetry, and a- interpretation a&-energetic 

isolation in a traditional way is thus not suitable. 

We shall interpret z.' z.'' e: (Iu). or z.'(u)z." as 'the states 
1. 1. 1 1. 1. 

z.' and z." are linked by processes possible under energetic 
1. 1. 

isolation (in a traditional way) of the system G .• 1
• 

1. 
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1.10 There exist for all I. E. ;i! 
l. 

12. 

"kth dimensional isolations" 

(Ix. ) • , or ( x. ) • , being equivalence relations defined on Z. ><. Z. , 
lt l. Jt l. l. l. 

Z. €. ;I:.. , and such that "extensivity or metrization axioms for 
l. 

the kth deformation coordinate" hold. 

l.ll There exis'b a meter Ztk for the kth deformation coordinate 

and all Zi £ ;;z:_ are ~-measurable with respect to this meter. 

This leads to the definition and existence 

proof of a set of extensive or additive 

deformation coordinate :runctions ~(zi) for 

the domain~ . . z., Z. e:. :Z... 
l. l. 

The statement z.'z." E: (Ix.). or z.'(x. )z." will be interpreted 
l. l. K l. 1 K l. 

as: "the states z. ' and z." are the outer states ot a chain ot 
l. 1 

possible processes )Jllder kth dimensional isolation, or under 

constant value of the kth deformat:im coordinate (e.g. constant 

"1'olume)" 

The concept of dimensional isolations is introduced as an interesting 

possibility to define extensive (additive) deformation coordinates in 

a similar wa:y a.a we defined extensive ( additive) entropy and internal 

energy variables. 

Whether this approach:illas more than a formal significance may be 

doubted. If preferred one 1JJIJ:3 replace this set of axioms by the 

straightforward statement of the existence of a set of additive 

(extensive) deformation coordinates~: 

fl or 

1.10• There exist extensive or additive deformation coordinate 

functions ~(zi) defined on zi .e: ;z::_ 
fJ. 
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Looking in retrospect to the above remarks it will be clear that 

they cannot be considered as rules of interpretation. In a 

certain sense the question of interpretation is begged. We have 

associated the primitive terms of the form.al theory with terms of 

the physical theory but not answered such questions as: how to 

decide whether a physical object can be considered as a closed 

system; how to decide whether a relationship between physical 

systems is a thermal connection, a force connection, or that a 

physical system is adiabatically, energetically, or kth dimensionally 

isolated. These questions lie however outside the scope of this 

work and I will not try to give a provisional answer, aware of the 

considerable difficulties into which we are led •. 

Extremal principles, absolute temperature and absolute forces 

6 

1.12 The systems zi £:.Ota have a phase space [. up····· ·xki'"'} 

k ~ N. C.. N, vhere N is the set of integers vhich indicate the 
J. 

different kinds of' def'ormatien.coord.inates (axian 4.3) 

The axiom is usually either tacitly assumed or an implication ot 

other assumptions. For instance, it f'ollovs f'ran the assumption 

that systems Zic ;!. 0 have a phase space [ e, ••• ~i ••• ) and 

that U . is a monotonic increasing .function of' the empirical 
J. 

temperature e. 
The importance of this axian lies in the selection of' a preferred 

set of' variables for systems Zi e. 0(0, vhich are interpreted as 

systems without adiabatic partitions. The set of variables 

[ Ui'••• ~i ••• ] , which are all extensive, pl~s a crucial 

role in the f'urther development of the theory and difliculties which 
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arise through th choice ot other sets ot variables, e.g. 

[ e, ••• ~ ••• ] , caused - ~discontinuities or kinlts in the 

s(a ••• ~i···> orfL(e, ••• ~ ••• ) tunctiona can be avoided. 

A 

1.13 For systems Zi e. ;t e the me.xjmUDl entropy principle 

(axiom 5.1) holds. 

This leads under certain "local continuity asaum.ptions" 

lil1eortm S'". it) to the definition of 

an absolute negative reciprocal temperature tunction 

s - 1/T(z.) 
1 

(definition 5.13) 

1.14 The syst~ Zi t. :(
0 

are measurable vi th a set of 

absolute thermometers, covering together the temperature dauin 

- .. < li < + • , or a subdomain (axiom 5.15);an absolute 

thermometer being a system ot ;( 
0 

tor which certain "continuity 

assumptions" hold. 

A 

The maximum. entropy principle, introduced in thermo~cs by 

F.W. Gibbs, is by many authors recognised as a povertul axiomatic 

starting point. 

Its precise formulation has given considerable ditticultieo. Tiaaa 

vas presumably the first to give an unambiguous formulation. Our 

formulation is adapted to the theory, as presented here, but 

closely related to Tian' s. 

A 

l.15 For systems z. £ :;:( the "mechanical" minimum 
1 •:1t 

energy principle (axiom 5.2 ) holds. 
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This leads under certain "local continuity 

ttheot.!"' ~ /~) assumptionsY to the definition of an 

1.16 The 

abs:iute force f'unction Fk(zi) (definition 5.14) 

systems Z. £ ~ are measurable with a set of 
1 'f'k 

absolute dynamometers for force k, covering together the force 

domain - CD < Fk < + m 1 or a subdomain; an absolute dynamometer 

force k being a system of .;( + for which certain "global 
k 

continuity assumptions" hold (axiom 5.16) 

In a development of then10dynamics, which does not presuppose 

mechanics, a minimum internal energy principle is no less 

important than the maximum entropy principle. It has in its 

formulation striking similarities with the l~ter principle. 

It leads to the introduction of an absolute force concept, 

which can be interpreted as the force, usually borrowed fran 

mechanics. Its definition is of a static character, it does 

not presuppose newtonian dynamics or similar theories. 

Together with the maximum entropy principle it yields the 

Gibbs :fundamental equation for closed systems: 

dSi = ( i/TldJli - ~l/T) Fk d ~. 

The mechanical minimum energy principle must be distinguished 

from the Gibbsian minimum energy principle, which can be proved 

equivalent to the maximum entropy principle within the framework 

of the theory. 

6 

1.17 For all Z. E.. ;((, S. (z.) has a lower bound 
l. l. l. 

(axiom 6.4) 

This leads in the case of systems for which 

"global continuity assumptions" obtain, to 



1.18 

lim 
T(z.) + o 

1. 

N(z.) < o 
1. 

lim 
T{z.) + o 

1. 

N{z.) > o 
1. 

16. 

the existence of bounds for the energy 

and deformation coordinates {theorem 6.5) 

and to certain properties of the systems 

concerned at the boundaries of the domain 

of definition in the phase space l}Ji' ···~i·••J 
(theorem 6.6). 

is independent 

- 0 

- 0 

These axioms comprise all that still has to be stated to cover 

the traditional content of the third law. Different aspects 

of the third law appear already to be consequences of the foregoing 

axioms. 
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CHAPTER 2 : ENTROPY 

In this and the following two chapters I will develop mainly the 

formal theory. This will be done in a series of axioms, definitions 

and theorems, which again are considered as self contained. It 

appears however profitable to embed this core in a text, that 

explains the main lines of thought and stresses the more important 

results. This text belongs also to the formal theory. We do not 

need special signs to separate axioms, definitions and theorems from 

the embedding remarks, except that we mark the end of a proof with 

the sign Cl. In the few places where we bave the formal theory, 

for instance to explain the physical interpretation of a certain 

statement or symbol, I will again use horizontal lines and the sign ~. 

The aim of this chapter is to construct a set of extensive entropy 

functions S.(z.) for the systems z. E ~. 
1 1 1 

2.1 Def. A set of extensive entropy functions S. for the systems 
1 

z. E i is a set of real valued functions S. (z.), z. E Z., 
1 1 1 1 1 

such that 

(i) 

(ii) 

S.(z.") < S.(z."") 
1 1 ... 1 1 

if z - z. x z. x 
1 J 

iff z. "':=;> z ....... 
1 1 

then 

S (z) - S(z. z. 
1 J 

•••• ) := S.(z.) 
1 1 

+ S. (z.) 
J J 

+ 

For the construction of such a set of functions> conditions of different 

kinds must be fulfilled. 

The first kind consists of relationships between the adiabatic isolation 

relations - > of the composition ijk ••• 

Z. x Z. x Zk x and the adiabatic isolation 
1 J 

relations =l> i, 9> . 9> 
J, k' ___ of the individual component 
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systems z1, Zj, Zk' ~-· We call these relationships 

"metrizat:ion axioms for entropy". 

The second kind contains only an existence statement with respect 

to a system with special properties: an entropymeter Za 

A procedure for the construction of a function S
0

(za) and of 

functions S.(z.) is given and it is proved that this set of 
1 1 

functions has the properties of extensive entropy functions. 

Starting with a detailed presentation of this part of the 

theory we define first two useful relations in terms of the 

relation=>. 

2.2 Def. z"' + z"'' iff z' => z"'' and not z"'' => z' 

2.3 Def. 

Tbe interpretation of these relations will be clear: 

z .. + z"' ... has to be interpreted as : z ...... is irreversible 

adiabatically accessible from z', and z' ++ z"'"' means z"' and 

z' ... are connected by a reversible adiabatic process. The term 

adiabatic process has to be interpreted as explained in Chapter 1. 

The following four theorems give properties of these relations which 

we will use in the further development of the theory: 

2.4 Tb. The relation + is transitive and asymmetric 

( . . f .. ...... h ...... ...) i.e. 1 z + z t en not z + z 
Proof: 

transitivity: 

z"' + z ..... and z"'"' + z"'"'"', iff (2) z"' => z ...... and z"'' ~ z"'"'"' and not z"'"' => z"' 
J ~,,Ill .-, • ff ..,. "'1'#.i* ~,;, ,,,. (b 41tfX. not z => z , 1 z =i> z and not z => z ecause 



not z" ~ z' and not z 1 '' ~ z" implies not z • • • =?> z'. 

If not, then (3 z'z"z") not a"~ z• and not z' '' ~ z" and 

z'" ~ z', thus, as==> is comparable, not z" 9 z' and 

z" ~ z''' and z''' ~ z', thus, as 9 is transitive, 

not z" ~ z 1 and z" ~ z', a contradiction). 

Asymmetry follows innnediately from the definition CJ 

2.5 Th. The relation ...., is transitive, reflexive and symmetric 

This follows innnediately from the definition. 

2.6 Def: The equivalence classes of ._.. are called the "classes 

of states of equal entropy". 

2.7 Th. if z'-+ z" and z' ._.. z'" then z"' -+ z". 

Proof: 

if not then (3 z'z"z"~ z'-+ z" and z'...., z''' and not z''' + z"· 
J 

not z 1 
' ' -+ z" imples ( 2) not z ' ' ' ~ z" or z" ::;> z ' ' ' 

z'-+ z" and z' ...., z"' implies (2,3) z' ~ z" and z'" ~ z' 

and thus z'' 1 --=> z". 

z" ~ z 1 1 
' and z' ...., z 1 

' ' imply z" )' z' ' ' and z' ' ' -;> z' and 

tblis z" ~ z' contradictory with z' -+ z". D 

2. 8 Th. if z ' 9 z" and z ' ...., z 1 
' ' then z' ' ' -:::;:> z" . 

We next formulate the metrization axioms for entropy: 

2 .9 Ax. For systems Z. , Z. E. ~ the following holds: 
1 J 

( i ) ( v z . ' ' z . It ' z . ) ( z . ' =?> z . " i ff z . ' z . ~ z . "z . ) 
1 1 J 1 1 1 J 1 J 

v z. z .••• z. ......, Permutation z .••• z. ( 1· 1·) ( v zi-t-' • • • • n) ( ~ -w. - • ~ n) 
1 1 1 1 1 

(iii) (Vz.',z.") (if (z.• ••• z.')n ~ (z." ••• z.")n then 
1 1 1 1 1 1 

z.' -=> z. ") where (z. 1 ••• z. •) 0 means a state of a 
1 1 1 1 

composition of n identical systems Zi consisting of n identical 

states zi'• The brackets and the index n are omitted many timet, 

because there is never any doubt about the number of states 

z.• and z." involved. 
1 1 



i o~ "ttic t t~ shov that the sign ~i:> in these axioms 

ma_y be replaced by ++ and in the case ot (i) and (iii) also 

by +. This is the content ot theorem 11 and theorem 13. 

For the proofs ve need same additional theorems. 

2.10 Th. (z. '••• z. ')n -;, (z. " ••• z. ")n ift z.' 9 z." 
l. l. 1 l. l. l. 

Proof: 

it z.' ~ z. • then z. 'z.' 9 z. "z.' 
l. l. l. l. l. 1 

and z. 'z." 
l. 1 

z."z." 
l. l. 

thus z. 'z. • ~ z. "z." etc. Axiom 1J.iii gives the other 
1 1 l. 1 

half ot the proof. 0 

2.11 Th. For arbitrary systems z. ,z. 
l. J 

(i) CV z.',z.~z.) {z.' ++ z." ift z.'z. ++ z."z.) 
l. 1 J l. l. l. J l. J 

20. 

(ii) (V z.1 •••• ~.n) (z.'1 ••• z.n ++permutation z .:i. •••• z.n) 
l. l. 1 l. l. 1 

(iii) <v z. 'z. "> C 
l.' l. 

(z.• ••• z.•)n ++ {z." ••• z.")n itt z.' ++ z.•) 
1 l. 1 1 l. l. 

Proof: 

lJZmlediate consequences ot the definition ot ++ and the axiom I 
and theorem 10 0 
2.12 

Th. 

then z1 • ••• z.••• ••• z ' 
1 n ++ z " " Z " 1 •••Zi ••• D • 

Proof: 

z.' 
1 

• ' ' . ,.:,. ( 11 . 11 .. ) ' • ' ' ' .. • ++z- im:p.Lll;::s .1, .11 z1 ••• z .••• z -t+ z
1 

••• z. • •• s 
1 1 D 1 D 

This together vith z.• • • • z.• ••• z' 
1 i n 

the transitivity or ++ yields the theorem. 0 

2.13 Th. For arbitrary SJ'BteJU Z., z., t:.. ~ 
1 J 

(i) {\lz.',z.",z.) ( z.• + z." itt z.'z. + 
1 1 J 1 1 1 J 

{iii) CV' z. ',z. ") f ( z. ' ••• z. ')n -+ (z . " ••• z. ")n 
1 1 l 1 1 1 1 

z."z.) 
1 J 

itt z.' 
1 

and 
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(an irrunediate consequence of the definition of + and 

axiom 9 and theorem 10) 

The next two theorems will be needed in the second part of this 

chapter: 

2.14 Th: 

Proof: 

(13.i) 

(13.i) 

and •••• 

iff 

iff 

z 
n 

,. .. 

Thus z1" + z1"" and z2" + z2"'" implies (11.ii, and transitivity 

of+), z1"' z2""' + z1 ""'""' z 2""'""' • 

2.15 Th. if z""' + z""'""' and z""' z""'""' <-> z z, then z" + z + z""'""' 

Proof: 

(13.i) z""' + z""'""' implies 
,. .. ·-> 

,. ,. ,. 
and 

.. z ,.,. + ,.,. .... 
z z z z z z z ' 

thus (4, 7) 
.. 

z" + z" z"" + 
,. ,. ,. ,. 

thus (7) 
,. z,. + z z + z ,.,. z z z , z 

(13.iii) 
,. 

+ z + z 
,. ,. 

thus z . 
The entropy meter and its calibration 

,. ,. 
z 

We define, in a certain sense simultaneously, a special system Z~, 

called "entropy meter and a function S <T (zcr)." We shall start 

with the latter, because it will clarify the properties of the meter. 

2.16 Def. A real valued function S(zcr) for zaE Zc;ris constructed 

as follows: 



Choose tvo states z~. z" E. Z such that z' + z" a a a a 
S(z') = O S(z") -a a l 1 ve vrite z~ • z

0
(0)s , z~ • 

S(z
0

) • } . itt z (0) z (l) ++ z z etc • . a a a s aa 

22. 

z (l) 
a s 

S(z
0

) • n(integer) itt z
0

z
0

(n-l)
8 

++ z
0
(n-l)s z

0 
Cn-1)

8 

S(z
0

) • -1 ift z
0

z
0
(l)s ++ z~(O) z

0 
(0) etc. 

S(z ) • r (real) ift sup { d : z (d) ~ z } • r or a a a 
inf { d : z ~ z (d) } • r a a 

(In case that S(z
0

) • n and there does not exist a z: such that 

S(z•) • n+l ve define S(z ) • n + 1 ift a a 
z z (n - i) ++ z(n) z(n).) 
a a s 

The above procedure can justly be called a calibration ot the 

meter z(5. 

2.17 Det. An entropymeter is a systea Z such that a 

(i) ~ + >~ (~' 1 ..(. ) ,'t?, . ' being an intenal ot real.a and 

~ being the tamil.y ot equivalence classes 

(ii) "calib~tion property": 

&z )(\f~(z)) C3z (d') 1 z (d") ) 
a ~ a a s a s 

[ z ( d') , z ( d") t. Jt":' ( z ) and z ( d') _,. z
0 a s a s ~ a a s + z (d") 1 a a 

where a neighborhood ~ ( z 
0

) is defined as a set 

{zt : z' ;+ z't + z" } containing z • 
b' a d a a 

(iii) (Vz• ,z")(3 z ) (z' z• ++ z z ) 
a a a a a a a 

We explain the formalism ot (i) as tollovs: there exists a 

similarity mapping trom the tamily ot classes ot states ot 

equal entropy, ordered through the relation _,, onto an interval 
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of real numbers!e .. in their natural order< • (ii) can be 

worded in this way: every interval {z~ .. * ..... } z - ~ z -+ z a a a 
containing z

0 
, contains also states with dyadic s

0 
values 

(d ... ) and z (d .... ) such that z (d .. ) -+ z -+ z (d ..... ) • zcr s a s a s a a s 

Because it is not immediately clear that (ii) and (iii) are 

mutually independent, we prove this by showing that a system 

can be defined for which ax.9 and properties (i) and (ii) 

obtain and for which (iii) is falsified and a system for which 

ax.9 and properties (i) and (iii) obtain and (ii) is falsified. 

Suppose a system Z such that 17 (i) and (ii) obtrins and such that 

the composition Z x Z satisfies : 

if rl + r2 < r3 .+ r4 then z(r1) z(r2) -+ z(r
3
) z(r4); 

if rl + r2 = r3 + r4 = d then z(r1) z(r2) ~ z(r3) z(r4); 

if rl + r2 = r3 + r4 i: d then 

if (rl 
2 (r - r )2 then z(r1) z(r2) -+ z(r3) z(r

4
) - r ) < 2 3 4 

if (rl - r )2 = 2 (r -3 
r )2 
4 then z(r1) z(r2)~ z(r

3
) z(r4) 

We can check that ax. 9 is satisfied in this case. However, 

if r 1 + r 2 i: d and r 1 ~ r 2 then there exists no state z(r) 

such that z(r1) z(r2) ~z(r) z(r) 

Remark: in this example however, 

(\/z (d ... ), z (d ...... )) (3z (d)) (z (d .. ) z (d ..... ) e z (d) z (d)) 

It can be proved that this is a consequence of property (ii). 

A strengthening of property (ii) in the following sense makes 

(iii) a theorem: 

(ii-a) (../z~, z; .. > ('V~(z; z; ... )) (3z
0

(d1), z
0

(d2), z
0

(d3), z
0

(d4)) 

{z
0

(d1) z
0

(d2), z
0

(d3) z
0

(d4) £ ~(z; z; .. ) & 

z
0

(d1) z
0

(d2) -+ z; z; ... -+ z
0

(d3) z
0

(d4)}. 



An example of a system for which 17 (i) and (iii) obtains 

but not 17 (ii) is the following. 

Property (i) allows us to map the system -;/', + onto a line 

element 1, while 
S(z)• 

w + r 

preserving t/ Suppose 

·. 

s <;l • f- ------
1 - - -- - - - - - -

0 ------- I 
j 

---+---------· .. J, 
·z(O) z(l) z* 

figure 2.1 

24. 

the maps of z(O) and z(l) lie on the line t as indicated in 

the figure. It is quite possible that in the construction of 

the function S(z) the procedure fails for all states z such that 

z* + z. We are forced in this case to the conclusion 

S(z) • S(z*) (• say r) for all z : z* + z, thus S(z) is not an 

entropy function. This situation is incompatible with property 

(ii), and the maintenance of property (iii) does not lead to 

inconsistencies. Suppose for instance that in the domain 

{z : z* + z}, choosing two states z(O)', z(l)'.an< S'(z) 

function can be constructed which is real for all z in this 

domain, and that we unify the two real valued functions for the 

respective domains {z : z =.> z*} and· {z : z* + z} to one function 

S(z) which takes in the first domain the values S(z) • r and in 

the second the values S(z) • w + r (thus not real). It is 

possible to associate with a pair z(r1)z(w + r 2) a unique 

value w + r 3 such that z(r1)z(w + r 2) ~ z(w+ r 3)z(w + r 3) 

without inconsistencies with axiom 9 and properties 17 (i) and (iii) 
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On the basis of the metrisation axioms for entropy and the 

definition of the entropy meter Z and the function S (z ) we a a a 
can prove the following two theorems, the first stating that 

the constructed function is an entropy function with certain 

continuity characteristics, the second that the function for 

compositions of identical systems Z behaves as an extensive a 
entropy function. 

2.18 Th. For an entropy meter Z : a 
(a) {r : S(z ) a 

... r} • ,/(,' where ~, is an interval 

of reals 

(b) (Vz;, z;') (S(z;) < S (z") if f z 
, 

+ z'') a 
Proof: 

(a) Let f{," be the smallest interval of reals which contains 

{r : S(z ) = r}. (17 (iii)) guarantees that for all dyadics a 
d • p/2g, pJg being integers, if d E /?:'then there exists 

a state z such that S(z ) = d. a a 

The construction of the function S(z ) guarantees that for the a 
states with dyadic S values the natural order according to these 

values is also an entropic order. This is a consequence of 

Theorem 15. 

The calibration property 17.ii guarantees that every z
0 

divides 

the entropically ordered set {z : S(z ) • d} in a lower and an a a 
upper cut, thus for all z0 sup {d : z0 (d)s + z0} = inf {d: z0 + 1fd>s1•r. 

Finally, if r E /(;' then Gz ) (S (z ) = r). If not, thus if an a a 
entropy value r is "missing" then we can divide the set (Z ,+) into 

a 
two succeeding subsets z01 = {z0 : zcr => z0 (d)s' d < r} and 

z02 = {z : z (d) => z , r < d} a a s a 
Z01 does not contain a last state, z02 does not contain a first state, 

and z01 U Z02 • Z(f • With respect to the mapping 

(Z , +) ~ (~ <) this implies that also (,e <) can be 
a 

divided in two · r/J ) (I? ) succeeding ordered sets \').l' < and l.2' < such that 
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~ has no last element 1 .~no first element 1 and {(, U fS_ • R. 
This contradicts the supposition (17.i) 

(b ) We prove first _:_if z:,. ~ z: then ~(z:,.> L.. S(z~ ) 

It not, then z~ -+ z:. and S(z;,.) '? s(z;) ; 

z:,O _, z~ and S(zd) • S(z:) implies that all the atates 

~ in the interval [ Za : z~-+ zc:r ~ z;. J have the same value 

S(zcr) • S(z~) • S(z~) which contradicts the calibration property. 

z~ ~ z'a and S(z:,_ ) > S(z~) implies (]d)(S (z~) < d <. S(s~)) 

and thu, because ot the definition of' S(7t}, z~~ 7ijd) and 

zJ_d) ~ z:r , thus z~ -?> z6 1 contadictory to the supposition. 

The same reasoning leac:ls to : it S(z~ ) < S(z~) then z:r-"> z';, Q 

2.19 Th. For the compositions of' identical entropymetera Z.S, : 

z<T(r.l ) zo- Cr..,..) ••• . z0 (~m) :=? zcr(r.',) z0 (~1) ••• zcs<~~) itt 

~ ~. ~ ~ t 'r -g; l~k 

Proof: 

We prove the theorem first tor eyadic rationale in the interval (0 11) 1 

then for all dp.adics and finally tor &11 the real.a. 

We omit subscripts, writing z(~) in place ot z..(~) • 
. \1 8 

(i) Dys.dies in (0,1) can be written in a form P/
2

n 1 

is clearly true. 

m 
£~ d' 
l • 

We prove that i t t he lemma is true for n - 1 then it is true for . 

n, or i t it is true for dyadics ot the form pj 
2
n-l , p € [ 0 1 1 1 •••• 2n-l j 

then it i s true f or dyadics of the f orm q/ 
2
n 1 q E.. [ 01 1 1 ••• 2n ] • 



If q is even then we write q. 
l 

If q is odd then we write q. 
J 

Now (10): 

27. 

= (2p. + 1)/ 
J /zn 

z [qV2nJ .... z(q//2n] = > z(qVin) .... z[q,;~n) iff 

z (qYin} z (qYin) ~ z(qYzn) z (~) 
z (qY2n) z (ql/in) z [Yin) z [q~n] 

:.o> 

iff (······· z (qYin) z (qi/in) ..... z [qj/in) z [qj/zn) ..... J~ 

(· · • •• • • z (qYzn) z (qVin) · • · · · z (qVzn) z [qi/in) ..... )iff 
(using the definition of dyadics) 

(· ... z(Pi/in-1) z (Pi/zn-1) (q.+~ ) z J 20 z (qj-~n) .... ) > 

( .... z Pi~n-1) z (P~n-1) .... (q:+~ ) z J 2n z (qj-~n) .... ) iff 
( .... z (pyzn-1) z (Pi/in-1) z[pj+Yzn-l)z (Pj/zn-1) .... ) ---> 

( .... z[PVzn-1) z (PVin-1) z (pj+3/in-1) z (PiAi-1) · •• • ) 
iff (supposing the lemma obtains for n-1) 
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E (p . + p.) + I: (p. + p. + 1) < t (p :' + p :') + E (p ': + p ": + 1) 
1 1 J J ' 1 1 J J 

if f I:q. 
1 

+ I:q. 
;J 

<. ... tq:" 
1 

+ I:q ::­
~ 

all even q's all odd q'a all even q's all odd q's 

if£ m 
t t\ 
1 

< 
' 

m 
t 
1 

(ii) The extension of the theorem to all dyadics starts with the 

proof that it is true for n • O, p £. {O, 1, 2} 

z(pl) ..... z(2) • ••• z(pm) => z(pl) •••• z(p~) if f 

z(pl) z(2) . . . . z(pm) z (O) ...;> z (pl) .... z(p~) z(O) if f 

z(pl) ..... z(l} . ... z(pm) z (1) => z(pl) . ... z(p~) z(O) 

and this reduces this case to the case n • O, p £ . {O, 1} 

In the same way we extend it to p £ {O, 1, 2, 3} etc. 

The rest of (i) was independent of the value of p. 

(iii) The extension to the reals starts with the deduction of: 

m m 
t rk < E rk Then there exists a dyadic d such that I:rk < d < I:rk , 
1 1 

and sets of dyadics {t\•·• }and{dk, •••• }such that 

m m 
d Cl E ~ • E elk and rk < <ik and~ < rk. 

1 1 

This implies z(rk) + zC<fk> and z(~) + z(rk) and 



Consequently (l.J+) z(rf) ••• z(r~) + z(df) ••• z(d~) and 

Because E'1t a Ec!k 

contradictory to the supposition. 

Finally we prove: 

m m 

z (r ) • 
m 

z(z ) 
m 

29. 

If E < E 
, 

then z(r1) ••• z(r ) ~ z(rl) z(r') rk rk .... 
' m m 

1 1 

m m 
L < E 

, 
then again there exist sets of dyadics rk rk 

1 1 

If 

{<\: .• } and· {cik} such that Erk < E'1t = Ecik < Erk and 

It follows that z(r1) ••• z(rm) + and ~ < 

If 

will be proved next: 

Consider the state z(r1) •••• z(rm) z(O) •••• z(O), in total 

2t elements z. By t times application of (3z) (z' z'~ z z) 

we find: 

3 z(r) [z(r1) ••• z(ym) z(O) ••• z(O) <~ (z(f-) ••• z(r) 2~ 

But the first part of (19 iii) gives then r 

Similarly we find 

3 z(r') r. 2~ Lz(rl) ••• z(r~) z(O) ••• z(O) ~ (z(r) ••• z(r)) .J 

m 
E 
1 

= 2
t , 

r • 

But we suppose that thus 
, 

r • r , thus 



~< 1 ••• ~m) ~ O, ._.z(O) <.~ zCri> ·~ · zCr:i> z(O) •• • z(O) 

The following step is the definition of a function SiCz1) for an 

arbitrary system zi £ X with the help of an entropy meter z
0

• 

The construction can be called a "measuring procedure". 

2.20 Def. A function Si(zi) is constructed as follows: 

Choose an entropy meter Za and a state zi £ Zi 

S.(z:) = o we write z: • z.(O) 
1 1 1 1 s 

(or more generally) 

S. (z .) 
1 1 

• r 

30. 

Tb.ere is still no guarantee that for all states of all systems real 

values s1(zi) can be defined, with respect to a chosen entropy meter 

z0 if for a system Zi this condition is fulfilled we call the system 

S-measurable with r espect to the meter z0 • 

2.21 Def. The system Zi is S-measurable with the entropy meter z 
if for every zi £ Zi S(zi) • r (r being a real number). 

The following axiom guarantees that all systems Zi £ Z are S-measurable. 

2.22 Ax. All systems z. £::tare S-measurable with respect to the 
1 

entropy meter Z0 

The existence proof of an extensive entropy function defined on all 

states Z· E: Z., Z
1
• £ Z is Stl'aightforward. 

1 1 
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~oz. . 
2.23 Th. For a set of systems z1 ••••• zm obtains for a.*l the possible 

compositions: m m 

z
1 

•••••••••• zm 7> z
1
• •••••••• zm' i ff L s. ( ~) $. 2- S. { z' ) 

l l. """l. l 1 i 

Proof 

(9.i) Z1···Zm ~ Zi····· z' iff 
m 

(20, 8 ) z
1

{o) z (s
1

Cz
1

)) ••• z (o)z (s (z ))
5 

~ 
CT S m (f mm 

=;> z
1

(o) z,.. (s
1

Cz
1
•)) ••••• z {o) z {s {z')) iff 

v s m (j'mms 

(9.i) z (s
1

(z
1

)) ••••• z (S (z)) => z<J(s
1

(z
1
•)) .. z (S (z')) 

c:r s (j m m s SCT m m s 

m m 
iff (19) Z::.: s.(z.) ~ 

1 1 1 
Z:s.(z!) 

l 1 1 
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CHAPTER 3: INTERNAL ENERGY 

This chapter is an analysis of the conditions which enable us to 

construct a set of extensive internal energy f unctions Ui(zi) 

for the systems Zi E ;;t;, 

3.1 Def. A set of extensive internal 

the systems Zi E Zis a se t 

f . (z.) z~ £ z., such that 
1 1 4 1 

(i) f.(z.') 
1 l. 

• f. (z. n) 
1 1 

energy f unctions f.(z.) for 
1 1 

of r eal valued functions 

iff z.'(u) 
,.,. 

z. 
1 1 

(ii) if z = z. x z. x . . . then f (z) • f (z. z , ",) • 
1 J 1 J 

f. (z.) + f. (z.) + ..... 
1 1 J J 

The construction of such a set of ext ensive energy functions meets 

a fundamental difficulty in the fact that the r elation (Iu)i or 

(u)i or (u) is an equivalence relation, which does not invoke an 

order in the equivalence classes of "equal internal energy". The 

method followed in the case of the construction of the extensive 

entropy functions cannot be used without the introducti on of 

additional properties. There is a simple way to overcome this 

difficulty. We establish in the energy equivalence classes of 

the special system which will be used as an energy meter 

a simple order through the extra requirement that the energy - and 

entropy equivalenc classes of this system are i dentical . The 

order of the energy equivalence classes vbich is described through 

the relation ~ u)v i then identical with the order establ i shed 

by t he r elation ="v Thus: 

3.2 Def: For al 

(i) "' ., < u) z 0 iff 



(ii) z ' <u) 
v 

33. 

iff z , + z ,, 
v v 

Other requirements of the energy meter will .be explained in the 

detailed exposition below. 

Our first objective is to define relations ~u) for compositions 

of identical energy meters, and to derive a theorem giving 

properties of the relations ~u), such that this theorem is iftOmorphic 

with the metrisation a~ioms for entropy, however, restricted to 

compositions of energy meters Zv (i.e. the theorem can be obtained 

by replacing the symbol ~ by the symbol ~u) and substitution of 

Z v for Zi' Zj). This theorem will be derived from the metrization 

axioms for energy" and the assumed properties of the energymeter. 

Then we define a function Uv (zy), isomorphic with the function 

S <r (zlT). The definition of the energy meter Z 'I is such that, 

by replacing in the definition of the entropy meter the indices 

s and <r by the indices u and v and the sign + by the sign 

<u), properties of the energy meter are obtained. This situation 

allows us to formulate and to prove a theorem stating tilt U v<z~) 

behaves as an extensive internal energy function for compositions 

of identical systems Zv, simply by making appropriate substitutions 

in the isotoorphic theorem and proof of the former chapter. 

The same procedure leads to a definition of a function u. (z.) for all 
1 1. 

systems Zi E ";t.... and the proof that this function is an extensive 

internal energy function. 



~!rization asioma for ener17, the met rization theorem 

In the detailed exposition we will give firstly the "metrization axioma 

for internal energy" 

3.3 Ax. For systems z1, Zj E ~, the following bold1 

(i) (Yzi"'' zi.-..' zj) 

(Vz. -s., •••• z.D) 

(zi"' (u) zi"'"' 
l 

iff z."' z. (u) z. ,,,, a.) 
1 J 1 J 

( ii) 
1 1 

(z. • • • Z. D 
1 1 

(u) Permutation zi
1 

••• 

(iii) CV zi ... , zi "'"') (if Czi"' ••• z1 "')n (u) (zi ,,,, ••• zi """)n then 

zi ; (u) zi_ "'"') 

The following theorem& are immediate consequences, and will be needed 

later : 

3.4 Th. (z ' ••• z"') 11 (u) ( ,,,, '')n ·ff z' z ••• z 1 (u) 

Proof : 

z ' (u) z"' ' implies (3.i) z"'z"' (u) z"''z' and z"'z'"' (u) z'"'z ... "'. 

tbua (3.ii) z'z ... (u) z"'"'z"' ... etc. Aziom (3.iii) offers the other half 

of the proof. D 
3.S Tb. i n If z •• • z (u) n n+1 (z* ••• z*) and z 

i n n+1 2n then z ••• z (u) z ••• z iff z* (u) z** 

The proof i s straightforward 

then z
1 

.. . 
Proof: 

z ,, 
l • •• 

z1 (u) zi "''impl ies (3. i, 3.ii) z
1 

Thus the transitivity of (u) yields: 

z.,, . .. 
1 

• •• zi •• • 

... 

z 1 • • • i ,,,, . • • •n ( u) z 1"' • • • ~i"' • • • zn ~ • 0 

2n n 
z (u) (z** ••• a~*) 
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Next we introduce a generalised form of the definition 2 of the 

relations ~u) and <u) 

3.7 Def. 

(i) 

(ii) 

For systems Z such that'/ (Z) • 't((z): 

, n ) n+l 2n i.'ff z ••• z <u z ••• z .. 
n+l 2n 

and z z (u) z** ••• z** 

z' ••• zn (u) z* 

and z* •> z** 

••• z* 

n n+1 
z :1 ••• z <u) z 

2n 
••• z iff ••• idem ... and z* + z** 

n where z* ••• z* means (z* ••• z*) ; the brackets and the index n are 

again omitted because there is never any doubt about the number of states 

z* involved. 

We derive next a series of theorems which will lead to the important 

"metrization theorem" that we need to establish the similarity between 

the theory of this chapter and the former: 

3.8 Th. For systems Z such thatf'(z) • l<(z): 

n n the relation <u) on (Z JC ••• x Z) x (Z >< ••• .>£ Z) is transitive, or 

'f , n ) l. z ••• z <u n+1 2n n+ 1 
z ••• z and z ... 

then z' ••• zn <u) 2n+1 ln z .•• z 

Proof: 

(7) 
, n n+1 z ••• z <u) z 2n ••. z iff 

, 
z ... 

n+l 2n 
z ••• z (u) z** ••• z** and z* + z**; 

(7) 

n+l 
z 

n+1 
z 

... 
ln ... ... z 

2n 2n+1 3n z <u) z •.. z 

n z (u) z* ••• z* and 

. .. 2n t z (u) zt ••• z and 

because (u) is transitive: z** ••• z** (u) zt ••• zt and thus (3.iii) 

z** (u) zt and thus z** H zt; z*~ z** and z** H zt and zt + ztt 

implies z* + ztt and thus (5) , n ) z ••• z <u 2n+l ln 
z ••• z D 
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J., g Th. 

dleu zt 

• zn (u) .u+l za If z ••• w •••I 
D+l 2D. 2Q+l 3D 

S ••• I <u) S •••• 

... 
Proof: 

20+1 • •••• 
3D 

D+l 2D Suppose z ••• z (u) z* ••• •* and &2D+1 ••• &Jll (u) z** ••• a** 

Thua (7) z* + z** • 
. D 

The tran1itivity of (u) impliea z' ••• a (u) z* •• z* 

Thua (7) C. D ) z ••• z <u ••• 
Jll ,.., . . ~ 

3.10 Tb. For systems z such that ~cz> • Ucz> ud 

CVz', . . . zD') (31•) (z~ ••• zD (u) z* ••• •*) . • 

(Vz~, z2n) (either z1 ••• zn <u) D+41 .an or . . . I ••• 
D+1 z • •• z 2n <u) ....... ZD or ~ D ( ) D+1 z ••• • u & •••• an) 

Proof: 

~ D ( ) D+1 zD ( ) Suppo1e a ••• z u z* ••• z* and a ••• a u •** ... a** ; 

because either z* + z** or •** + a* or •** ++ a* the 

tbeorea follov1. D 

3.11 Th. For sy1tems z such that 'cl' (Z) • -Ucz> : 
Al ii •'') \VZ 1 ., 

Proof: 

Becau1e (7) 

(z' ••• 1' <u) z'' ••• 1'' iff 1' <u) •.-') 

, , ) z ••• a <u z'' ••• iff a'+ z'' 

aud z' + • .-, iff a' <u) a'' follova: 

• .- •• • z' <u) z.-' ••• z'' iff a' <u) a'' • CJ 
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3.12 Th. For systems Z such that (a) Y' (Z) = 1iJ..z), 

(b) 

(c) 

('Vz', 
2n+l 

z 
... 

z 

Proof: 

... 
z 

... ' (3 z*) (z"" 

.... (z' n 
z 

n ) n+1 z' .•• z z <u z 

n <u) z z n+1 z 2n 

n+1 z 

implies 

zm (u) z* 

<u) 

(c) 

n+1 z 

and 

n 2n+1 <u) n+1 2n 2n+1 and this etc. z z z z z .... 
z 

n ~n+·1 in+m <u) n+1 2n 2n+1 z z ... z z z z ... 
z 

2n+m <u) 2n+m+1 2n+2m. 1. (c) z z ... z imp i.es 

z 2n+m z n+1 z2n <u) z 2n+m+1 z 2n+2m 

this implies (3.ii.9): 

the transitivity of <u) gives finally : 
... n 2n+1 2n+m < ) n+1 z2n z2n+m+1 z ••• z z ••• z u z 

z 

and 

iff 

z 2n+m 

n+1 ... 

We are now in a position to prove the two theorems we aimed for, 

because they are similar to theorems of the former chapter. 

3.13 Th. For systems Z E ~ such that 

(a) ';:/ (Z) • 1'Cz) and 

(b) ('Vz', •.• zn) (3z*) (z' ••• zn (u) z* •.• z*) 

z2n and 

D 

the relation ~u) is a simple preorder on (Z x ••• x Z)n x (Z x ••• x Z)n 

for all positive integers n. 



-·-- -·· 

Proof: 

the comparability of <u) is implied by theorem 10; the transitivity 
' 

of 'u) follows from the transitivity of (u) and theorem 8; the 

reflexivity of (u) implies the reflexivity of 'u). 

3.14 Th. Metrization theorem: 

For systems Z £ ~ such that: 

(a) ::/ (Z) • '1«.z> 
C'lz "", . . . , (3z•) (z ...... zn (u) z* ... z•) (b) 

(c) C't/z"", . . . , . . . ... if f 

Z"" ••• zn z <u) ... 
(i) (Vz ... ' z2n z) (z"" ••• zn ~u) n+1 2n iff ... , z ••• z 

z..... • •• zn z 'u) n+1 z2n 9 z ... 
(ii) Nz ... , •••• zn) ~ ... . .. n ) • ... ~ z ~u permutation z ••• s 

(iii) (Yz"", z ... "") 4f 
... ... <u) ...... z ... z z . .. 

' 
z"" ~u) z""J 

Proof: 

(i) follows from axiom (3.i) and condition (c); 

(ii) is an implication of axiom (3.ii); 

(iii) follows from axiom (3.iii) and theorem 11. 

z"""" 

The construction of extensive internal energy functions, 

the energy meter. 

then 

We start again with the definition of a function Uv(zv) for 

a special system Zv• which properties vill be explained aftenrards. 
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3.15 Def. The function U (z ), z E Z is defined as follows: v v v v 

eh t t ' z '' ~ Z such that z ' + z '' oos e two s a es zv , v w v v v 

U (z "') = O U (z '') = 1 ; we write z ' • z (o) , v v v v v vu 

z .., - z (1) • 
v v u 

u (zv) • n (positive integer) v 

UV (zv) - -1 iff z z (1) v v u 

UV (zv) • r (real) if f sup 

z z etc. v v 

if f z z (n-2) (u) v v u 

(u) z (o) z (o) etc. v u v u 

{d: z (d) <u1 v u zv} -

z (n-1) v 

r 

or inf {d: z <u) z (d) } v v u • r where d is a dyadic. 

In the case that there exists a zv such that UV (zv) • n, 

and there does not exist a zv' such that Uv (zv') a n + 1, we 

u z v 

define U (z ) • n + 1/2 iff z z (n - 1/2) (u) z (n) z (n) • 
V V VV U V UV U 

3.16 Def. An energymeter is a system Z E ~ such that v 

• 1.( (Z ) 
v 

(ii) (/, -+) -::! (R', <) 

(iii) (vz ) Cv Kcz )) C:az (d') , z (d") ) 

(n-1) 
u 

v ~v v u v . u 

[ zv (d')u, zv (d"')u E ./fjz) and zv (d')u + zv-+ zv (d")u] 

("calibration property of the energymeter") 

where, again, a neighbou'Ihood ~zv) is defined as 

a set {z . z , .... z + z ''} v • v v v 

(Vzv', n ) (3z*) (zv 
, 

z n (u) z* z*) ... , zv ... . .. 
v 

(iv) 

(v) (Vzv 
, 1n z) (zv 

, n <u) n+1 2n if f , zv , z z z v v v 
, n <u) n+1 2n z) z ... z z z z v v v v 



p~oparty (iii) explaiua that in every neighbourhood, defined 

through--t, of a state of the energymeter, are atate• with dyadic 

energy valuea. This property enables us to define for every state 

sv a value Uv (zv): the meter can be "calibrated". 

We can explain that (iii) and (iv) are independent by similar arguments 

aa we used to demonstrate the independence of the related properties 

(ii) and (iii) of the entropymeter. The properties (i), (iv) and 

(v) form the conditions under which the "metrizatiou theorem for energy" 

(theorem 14) obtains. 

The queation ariaea, whether the energymeter ia a highly artificial 

devic for aolving mathematical difficulties of the formal theory, 

or a ayatemwhich haa also an acceptable physical interpretation. 

• will demonstrate that the energymeter can be interpreted a• 

A 

calorimeter. The crucial property which leads to this interpretation 

This property implies that a change in energy, 

vidlout a change in entropy, is impoasiblei the system can.not do work, 

reversibly, in adiabatic isolation, or the internal energy is only 

a function of the entropy. A system with a one dimensional pbaae apace 

vith U or S as the only independent coordinate fulfilla this 

condition. A calorimeter is essentially such a system: the internal 

energy i1 a unique independent variable of the system, the calorimeter 

ia not able to do work. 
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Measuring energy differences with the energy meter is thus essentially 

performing calorimetric measurements. The construction of the 

energy function Uv(zv) for the calorimeter is closely related to 

existing methods of calibrating these meters. 

A remarkable trait of this interpretation is that the concept of 

"heat" in the sophisticated form of "internal energy" regains such 

a central place in thermodynamics. This is, however, understandable 

if we realise that we aim to construct a thermodynamics independent 

of mechanics. 

~ As a consequence of definition 7 or definition 2, there exists 

a similarity mapping from ccf, ~> onto ((,(, <u)), where the 

equivalence classes of equal internal energy of the family Z{, 

are ordered through the relation <u), according to the 

ordering <u) of the states contained in them. 

Thus (i, ~) ~ dl <u)). From this and (Y', ~) ::::! (R', <) it 

follows that di, <u)) ~ (R', <u)). It further follows from 

definition 2 that a neighbourhood ;Y;; (zv) is also a neighbourhood 

.;i~(zv), where the latter is defined as a set {zvt: zv' <u) zvT 

<u) z ~} containing z • v v This allows us to rewrite property 

(iii) of the energy meter and to give an equivalent formulation 

of definition 16 as follows: 
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3.16* Def . An energy meter Zv is a sys t em Zv £ Zsuch that 

(i) 

(ii) 

(iii) 

'\f (Z ) • 1/.(z ) v v 
C1l, <u)) .= (R ... , <) 

()/zv) C't/ ~ Czv>) 

~v (d ... )u' zv (d ... ')u € ~ (zv) and zv (d')u <u) zv <u) zv(d' ... >u] 
where a neighbourhood ;f(Czv) is defined as a set 

{z t· v • z ' <u) v zvt <u) zv''} containing zv. 

(iv) cVz ; z n) (3z*) (zv 
... n * z *> . . . , ... zv (u) zv ... v v v 

(v) cvz ... , 2n 
' z) (zv' z n <u) n+1 zv2n iff . . . , z ... z . .. v v v v 

... zvn z <u) n+1 z2n ~ zv z ... v v 

A comparison between the metrisation axioms for entropy, the 

definition of the entropy function Su (z~), and of the entropy 

meter Z<T at one side and the metrization theorem, the definition 

of the energy function Uv(zv), and of the energy meter Zv at the 

other side, shows immediately the close formal resemblance. 

This al lows the following theorem: 

3.17 Th. For the compositi ons of identical energy meters Z : v 

Proof: 

zv(r1) zv(r2) •• • zv (rn) ~u) zv(r1 ... ) zv(r2 ') ••• zv(rn ... ) 

if f 
n 
l: 
1 

n 
I 
1 

Repl ace in the proof s of theorems 18 and 19 of chapter 2 ~by <u), 

the i ndices a- and 8 by the indices v and u, and s by u. o/rhe .. 

def inition of an energy function u1cz1) of an arbitrary system 

Zi £ ~ does not gi. ve special difficulties: 
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3.18 Def. A function U. (z.), z. E Z. E ·:il~ is constructed as follows: 
l. l. 1 l. 

Choose an energymeter z and a state 
, 

e: z. z. v 1 1 

u. (z. ') ::: o we write 
, 

• z. (o) z. 
l. l l 1 u 

u. Cz1) • r if£ z. z (o) (u) z. (o) z (r) 
l l. v u i u v u 

3.19 Def. The system Zi is U measurable with the energymeter Zv, 

if for every z. E z. U.(z.) • r (a real number). 
i i l. l. 

3.20 Ax. There exists an energymeter Z e: ~such that all systems 
v 

Z. e: ~are U measurable with the energymeter Z • 
i v 

The proof of the next theorem, which states that the set of 

functions u.(z . ) is a set of extensive energy functions is completely 
l. l. 

similar to the proof of the extensivity of S.(z.): 
l 1 

3.21 Th. For all Z . e: c::J. : 
l. 

n 
1: 
1 

11 
1: 
1 



CHAPTER 4 PBA~E SPACE, FUNDAMENTAL EQUATIONS 

This chapter introducea the concept of phase space. It will 

appear in chapter 5 that the phase space [ui, •• ·, ~i, ••• ] , k £ Ni, 

with the internal energy U. and the deformation coordinates X.. • as 
1 --iu 

independent variables, plays an important role . A second important 

phase space is [si, • • • Xiti, ••• ] , k £ Ni. Phase spaces are Rn spacea, 

where n is the number of independent variables defining the system z .. 
1 

I do not presuppose that every point of a phase space represents a state 

zi £ z1• Conversely, however, every state zi £ Zi is represented by 

a unique point of phase space. In other words: z. is represented 
1 

by the 11occupied11 points of a phase space. In the first paragraph 

of this chapter we will · devise a terminology which enables us to 

describe different ways of "occupation" of phase space. 

For a system Zi £ ';(. with phase space [ui, ••• , ~i, •• J, k £ Ni, 

an entropy function S.(z.), which can be written as S(z.) • 
1 1 1 

f(Ui (z.), ••• , X.. .(z.) .. ... ) is defined. This notation stresses 
1 -lt1 1 

that we are concerned with a set theoretical function with domain 

z . c Z., still without analytical properties. In traditional 
!. 1 

therraodynamica the function S.(U., ••• , x.. ., ••• ) defined for all 
1 1 -lt1 

points of the phase space [u., ... , x._ • , •• J k e: N., plays an 
1 --k1 1 

important role, and generally it is tacitly assumed that this function 

i s differentiable. In the second paragraph I will investigate which 

conditions have to be fulfilled to guarantee the existence of two-aided 

der i vatives and k £ N. at all "occupied" point• 
1 

of phase apace. These conditions are of two different kinds. The 

f i rst kind (23 i,ii) formulites the r equi r ements with respect to the 

occupation of the phase space [ui, •• • , ~i , • • • J, k £ Ni . The second 

kind (23.iii,iv) contains continuity assumptions f or the f unction 

Si(zi) • f (Ui(zi)' •• , ~1Czi)' ••• ). This t of suffi cient 



45. 

conditions can be investigated from a physical point of view. It appears 

then that they are physically indistinguishable from stronger conditions 

(27. i,ii), the latter being much simpler and allowing the development 

of a more transparent theni¥)dynamic theory. 

A second important function is U.(z.) • gCS .(z.), ••• , x.. .(z.), •.• ), z. e: z .• 
i i 1 1 --ici i 1 

This functi.on and S.(z.) • f(U.(z.), ••• , X.. .(z.), ••• ),are called the 
1 i 1 1 --ici 1 

fundamental functions. 

An investigation of the differentiability conditions of the internal 

energy function along lines similar to the treatment of the fundamental 

entropy function leads to similar results (Th. 28). 

The fundamental entropy and internal energy functions are closely related. 

An analysis of their relationships is, however, not undertaken in this 

axiomatization. 

Phase Space, Occupation of phase space 

4.1 Def. 

4.2 Def. 

An extensive phase space of the system Z. is a subset of the 
1 

set of extensive variables {u., s., x.. ., ••• } k e: N (N being 
1 1 --ki 

the set of indices indicating the different kinds of 

deformation coordinates), such that with every set of values 

for the variables of this subset there corresponds at most 

one state z .• 
1 

The following notation will be used for phase spaces: 

[u., ..• , xk., .. J , k e: N. c .· N; 
1 1 i 

[ •.• ' ~i, ••• J ' k E N. C:. N; 
1 

(s i ' · · · ' ~i' · · J 
etc. 

Systems with phase spaces [u i, ••• , ~i, •• J and 

, k e: N.C:N; 
1 

[S., ... , Xk'' •• :i , k e:N. are called "simple". This term 
1 i ~ i 

has, however, so many different meanings in different presentations 

of thermodynamics that the use of it can cause confusion. The 

property will therefore be mentioned explicitly in the following 

(e.g. in the extremal principles). 

We assume that the systems Zi e: ·.:c
6 

are 11simple 11
• 



4 -

the ay te zi &';G8 have a phase space (ui. • ••• ~i, •• J 
k £ N. C: N· 

1 

The conver1e ia not true. To show t his we consider the so-called 

"mechanical systems". An important characteristic of these systems 

is that they do not have a "temperature" or more formally they are 

not contained in ~0 • An "internal energy function" can, however, be 

defined for mechanical syatems, which function can be identified 

with the "purely mechanical" potential energy function. The 

mechanical energy which is disengaged in a transition from a state 

of higher potential energy to a state of lower potential energy can 

be dissipated in a calorimeter (energymeter) and thus measured aa 

a change in internal energy of the mechanical system. An identification 

of the aet of systems with phase space [si, ••• , ~i' ... ] , k £Ni, and 

the set~ is perhaps possible. 

An immediate consequence of the definitions of "phase space" 

and "simple system" is: 

The states zi of a simple system can be uniquely represented 

by points (vectors) r. in a phaae space R. : R..._. x ••• XR.vi 
-1 -1 --u1 it 

x •••• (k £ N.) and by points (vectors) r .... in a phaae 
1 - 1 

space R .... : a5 x ••• x ' x •••• (k EN.). 
- 1 . . 1 

1 l. 

Only theae two preferred phase spaces will be written in the 

shortened notation R. and R .... respectively; other phase spaces 
... 1 ... 1. 

will be written as cartesian products of the chosen variables. 

The distinction between the points of phase space and the 

•occupied" points can be expressed by the notation 

r. for point, and r.(z.) for point r. occupied by state z •• 
-1 -1 1 -1 l. 





x 

1 

R. •I( z ) 
1 

-1"1, J.' 

u 

The shaded parts represent existing states zi. 
The bold parts of line 1 and1!1 represent the 

x u subsets Zu(zi) and Zx(zi). 
The shaded part of the rectangular around zi 

represents a neighbourhood zi>{(zi). 
The following differences exist between the 
symbols used in this thesis and those used in 

my article ( 1 ) 

this thesis ( 1 ) this thesis ( 1 ) 

R.{(z.) 
-J. l 

Ri>(( zi) R~{( zi) Ritfu(zi) 
x 

Ru(zi) Ru(:Ji) R~{( zi) Ritfx(zi) 

Z~(zi) Zu(zi) z.>{(z.) 
1 1 

zj){(z.) 
l 

z~)(( zi) and zi{uC zi) are not defined identicaJJy. 

figure 4.1 



4.5 Def. 

The components of the vector r. can be vritten as 
-l. 

u.(r.), x._ . (r . ) etc, which has to be distinguished fro~ 
l. -l. -Kl. ... i. 

u1(zi)' ~i(zi) etc, the values of Ui, ~i' etc. for 

state z
1
•• It is obvious that for r.(z.) : U.(r.) = U.(z.) 

-l. l. l. -1 l. l. 

x. .(r.) = x. .(z.) etc. --iu -i. -Kl. 1 

To explain the properties of the phase spaces of the systems 

of thermodynamics we introduce a series of terms by formal 

definitions and clarify their meaning with the help of 

figure 1, which illustrates different concepts for the 

simple case of a two dimensional phase space Ru x Rx· 
In the following I shall often restrict the discussion to 

the case of the phase spaces Ru x ~ and RSX Rx· This 

will simplify the notation considerably and the extension 

to the n dimensional case will not present essential 

difficulties. 

A neighbourhood in R. 
-1 

of state z, 
l. 

is defined as a "box" 

around r.(z.): 
-1 1 

A neighbourhood in R. of state zi R.~.) :: RMz.) --1 -1 l. 1 

{r. : U. (r .... ) < u. (r.) < u. (r ..... ) & u. (r. ") < u. (z.) < u. (r. "") 
-1 1 ... 1 l -1 1 ... 1 l. -1 l. l l -l. 

& X.. .(r.'") < x.. .(r.) < x.. .(r.'"'") & x._ .(r.'") < x. .(z.) < x. .(r."") 
-Kl. -1 -Kl. -1 -Kl. -i -Kl. -1 -Kl. 1 -""kl. -1 

k E Ni} or abbreviated 

{ r. : r .... < r. < r . ..... & r .... < r. (z.) < r. ""}. 
-1 -1 1 l. -1 -i. 1 -1 

The straight line in R. through r.(z.), parallel to the 
-1. ... l. l. 

Ui-axes, is called the U subspace in ~i of zi: 



4.6 Def. 

4. 7 Def. 

4 .8 Def. 

4.9 Def. 

48. 

The U subspace in ~i = ~i x ~i is 

Rx(z.) :: {r. : X. (r.) = X. (z.)}. 
-11 1 -1 1 -1 1 1 

If R. c R_ _ x ••• R__ • 
-1 -lJi -Al.Cl. . . . ' k EN., then we write 

1 

R__xk, k EN. (z.) = {r. : x.. .(r.) = x.. .(z.), all k EN.}. 
-11 1 1 -1 -1<.1 -1 -1<.1 1 1 

The set of states z.t which occupy points of the U subspace 
1 

in R. of z. is called the U subset in R. of z .• 
-1 1 -1 1 

The U subset of z. in R. = Ru x R __ 
1 -1 i --xi 

r.(z. t ) E R_~(z.)} 
-1. 1 -11 1 

is: 

An open line element containing z. (or nx>re precise r.(z.)) 
1 -1 1 

of the U subspace ~(zi), or otherwise stated the intersection 

of the line ~(z.) and a "box" around z., without its walls, -11 1 1 

is called an U neighbourhood in ~i = ~ix ~i of zi 

An U neighbourhood in Ri = ~· x 
1 

~· of 
1 

z. is 
1 

X// - t/ n X ~~ . V(z.) = R / (z.) ~~(z.). -11 1 1 -11 1 

The set of states z.i", which occupy points between two 
l. 

occupied points of the line ~(zi) on either side of zi, 

is called an U neighbourhood in ~i ::::1 ~. x R__ of state 
1 --xi 

An U neighbourhood 1n z. with phase space R. = P'u x ~ ____________ 1 -1 i i 

of z. is: 
1 

{z.t 
1 

-j-
u. (z. "") < U. ( z. ) < U. ( z. """") & 

1 l 1 1 1 1 

U.(z."") < U.(z.) < U.(z."""") & 
1 1 1 1 1 1 

zit , zi"", zi"""" E Z~(zi)} 

z .• 
1 

. ---- -·-I 

I 

I 
I 
I 
l 

I 
I 
I 
I 
\ 

\ 

\ 

I 
I 



In a similar way we define for ·phase spaces R. • R_ • JC R.._ • 
... l, -11 l. -1{1 

zs x (z.) 
1 

etc. 

The next series of concepts describes possible ways of 

occupation of the phase spaces. Before we introduce 

these we explain different topologies. 

4.10 Def. The topology (R,~<) is the interval topology for the 

set of reals R, where~ is an open interval of reals 
· {r : r ... < i: < r"' ... } , 

This definition can be extended to the RN space without 

difficulties. 

z The states of a system with a one dimensional phase 

space R are ordered through the values r(z) £ R 

and this ordering gives the possibility of defining 

another topology, denoted by (Z,~<). 

4.11 Def. The topology (Z,-:X<)is the interval topology for the 

one dimensional set of states z, where~ is an open 

interval of states {z : r(z"') < r(z) < r(z ...... )}; the 

boundaries of these intervals are thus states. The 

extension of the definition of this topology to systems 

with more dimensional phase spaces presents certain 

difficulties, \~hich will be avoided by considering 

exclusively one dimensional subsets of more dimensional 

systems Z. 



\ 

so. 

The most complete form of "occupation" of phase space is 

described as global connectedness in the interval topology 

(R,~<) 

4.12 Def. The set Z~(z) is globally connected in the interval topology 

(R,"'ct<) iff {U(zt) : zT £ Z~(z)} =Rt , where Rt is an 

interval of reals. 

Thus the occupied points of the line ~(z) form a connected 

line element. 

4 .13 Def. The set Z with phase space [u, x] is globally connected 

in the topology (Ra,~<) iff 

4 .14 Def. 

(\lz) [{u (z:r) 

f.Yz) [ X(z t) 

z t £ Z~ ( z) } = R tJ 
zt £ Z~(z)} = R~ 

Ihii •ituatio~ i& ill~stratee ia figu£e la. 

A weaker form of "occupation" is "local connectedness 

in the interval topology (R, -;]..<)" where we require that 

every state has a neighbourhood which is globally connected: 

The set Z~(z) is locally connected in 

iff Wz) G zii,{/(z)) [{U(zt) 

the topology 
t ,(/, : z £ zX/v(z)} = u 

The extension of the definition to the set Z is similar 

to the extension of definition 12 to definition 13. 

Figttre le gives aa illt1atr-atiea ef a set 6 with phase &pacQ 

(!I, x], leeally eeaaeetee ia (&,:l<). 

Still weaker than "local connectedness in (R, 0<)" is 
0 local connectedness in (Z, J<)" which is defined as follm-Ts: 
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4vt4 Def. The set zu~(z) i s local ly connected in~he t opology 
1 

4.16 Def. 

4.17 Def. 

(Z~(z), !J<) iff: 

(Vz) cYz~ A/c"z)) Gz .. , z ..... ) [z', z"'' e: z~ffcz) & 

U(z') < U(z) < U(z"' .. )] 

This means that there exist no "next" occupied points on 

either side of z on the line ~(z). A next state, say z*~ 
implies that Z~(z) can be divided in two subsets· {zt : U(zT) 

~ U(z)} and. {z"ft : U(z tt) ~ u(/)}, which are both closed 

in (Z~(z),\:t<)' and Z~(z) is thus disconnected at z. 

The next concept to describe situations in which for 

every pair .of states z .. and z"''of the same U subset there 

exists a state z, such that U(z') + U(z'') • 2U(z). 

If in an interval of ZX(z), containing z' and z'', this 
u 

property holds, then the energy values U(z') + d(U(z' .. )- U(z'') 

for all dyadics 0 ~ d ~ 1 are occupied. We will say that 

the interval of the subspace ~(z) is "dyadically occupied". 

Again we distinguish the situation in which the property 
x obtains for all states of the subsets z
0

(z) etc. and that 

in which the property obtains for a neighbourhood of every 

state z. 

x The subspace RlJCz) is "globally dyadically occupied" iff: 

(Vz', z ,....) (3z,....') [z', z·", z"' e: ~(z) & U(z .. ) + U(z .... ) = 2U(z'')] 

x The subspace Ri.j(z) is "locally dyadically occupied" iff: 

t [· t X X.L-j-(Vz ) if z E z0 (z) then (3 Zu /V(z ) ) 

Nz'' z ..... ) (3 zn') {z', z''' z "' ..... e: z~ 4(z) & U(z') + U(z") D 

2U(z'") }] 
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We finish this paragraph with the proof of a useful theorem: 

4.18 Th. If Z~{z) is locally connected in {Z~{z), ~<) and ~{z) is 

locally dyadically occupied, then for all zt E Z~{z), there 
• X F ,,... · X .,./t } 

exists a neighbourhood Zu / V{z ) such that {U{z*) z* E Zu/V(z ) 

is dense in an interval of reals R* in the interval topology {R,~<) 
(or : {u(z*) : z* E z~(z)} is "locally dense" in (R, ~<)) 

Proof: 

Consider a neighbourhood z~;f{z) in (Z~(z),~<) for which the 

following holds: 

. ,,. ,,.,,. x //< ) c::i ,,.,,.,.) { ,,.,,.,. x< ) if z , z E ZU~(z then ~ z z E ZU z and 

U(z"") + U(z"""") • i U(z""""'). Suppose U(z"") < U(z) < U(z'""); 

the possibility of this supposition is guaranteed by the supposed 
x local connectedness of Zu(z). 

Consider the interval of Reals Rt m {rt : U(z') < rt< U(z"""")}. 

All energy values U(z ... ) 

0 < d < 1 are occupied. 

rt m U(z') + r(U(z"""") -

+ d {U(z"""") - U(z"")}, for all dyadics 

All reals rt E Rt can be written as 

(U(z"")}, 0 < r < 1, and every real 

O < r < 1 can be defined as the least upper bound of a lower 

cut of the dyadics {d : 0 < d < l}. Thus the set {U(zt) 

U(z"") < U(zt) < U(z"""")} is dense in the interval Rt. [==1 

Remarks: The distinction between local connectedness in 

(Z~(z), ~) and local connectedness in (R, ~) is of a purely 

mathematical kind and has no physical significance at all. 

Because every physical measurement contains an uncertainty, the 

resulting values can never be given as numbers, but are always 

more or less narrow intervals. The weakest physically 

controllable assumption about the occupation of phase space 

is thus local connectedness in (R, <). The same reason makes 

it impossible to distinguish physically between a dense set and 



it• closure. Thi& situation is of importance in the choice of 

the axioms for thermodynamics : it is prfectly reasonable not 

to choose the mathematically weakest assumption~, but to be 

content with the physically weakest assumptions, which lead to 

the fundamental thermodynamic equations. This will make it 

possible as well to avoid the complications of mathematical 

refinements. My policy will, however, be to try to explain 

the mathematically weakest assumptions, which we need, and to 

show afterwards, that the theory can be simplified by using 

a more physical approach. 

The functions S(U, ••• , ?'iti .•. ) and U(S, ••• , ?tit• ••• ) • 
Differentiability 

The entropy S. is a set theoretical function defined on the 
1. 

domain Z. • For a system with phase space [u. , ••• , x.. . , •• J , 
1. 1. -""It 1. 

k e: N., we can write this function as S.(z.) • f(U.(z.), ••• , 
1. 1. 1. 1. 1. 

X. .(z.), ••• ). In this notation the domain of definition is 
11:1. 1. 

clearly the set of occupied points of phase apace. 

The function S.(U., ••• , x. ., ••• ) is considered as distinct from 
1. 1. --iu 

the above function f, in this sense that the domain of definition 

is the phase space [ui, ••• , ~i' ••• ] , k e; N •• 
1. 

In view of 

this distinction, we have to be very careful in the use of the 

concept of "continuity11 
: the term "continuous" will never be used 

without a specification of the topology concerned. Continuity 

has the usual meaning: 

4.19 Def. A function f: X 1-+ Y is (X, J 1), (l', '::/2) continuous iff the 

inverse image f-l(G) of every open set G in (Y, ::J2) is an open 
-1 set in (X, ~\), or in other words if for every G e: J2, f (G) e: ~l. 
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4.20 Def. A function£: X-+ Y is (x,;/ 1), (Y, ~2 ) continuous at x EX 

if, for all open sets H in (X, 'tl 1), containiug x: 

the inverse image of every open set Gin (Y, ';/
2

) containing 

y a f(x), contains an open set H1 in (X, ~/ 1 ) which is contained 

in H. 

(or formally 0/H,G) (x E H € t/
1 

& f (x) € G E "(12) 

(3 H
1

) (Hl £ f(G) & H
1 

€ Jl & H
1 

C:: H) ) . 

We also need the concept of "smoothness" of a function at 

a value: 

4.21 Def. A real valued function y c f(x) is smooth at a value x • a 

4.22 Tb. 

iff for every sequence x
1

, x
2

, ••. such that 

the limit: lim 

x -+ a 
n 

f (x ) - f (a) 
n 

x - a 
n 

exists and is equal for all sequences. 

lim x • a 
n 

We.jare now in a position to explain the conditions which guarantee 

the existence of partial derivatives [asil 
au. 

l 

~i 

[
asi l [aui l ()Xit · and ()Xit· at the 

i ui' xti i si, xti 

occupied points r. (z.) of phase space [u., ••• , X. • • • J , k € N. 
-1 l l -kl l 

and r~ (z.) of phase space [s., ••• , x. .•.• ], k £ N .• 
-1 l l -Kl l 

Sufficient conditions for the existence of the derivative 

[
asi] 
()U. 

l x. 
l 

at every state zi E Zi are : 



lo~ _11 :. £ Z. : 
1 1 

{i) Z~(zi) is locally connected in (Z~(zi),:J'<) 

(ii) ~(zi) is locally dyadically occupied ; 

(iii) s.(z.t) • f(U.(z.t)), z.t £ zXU(z.), is 
1 1 1 1 1 1 

({U(zit) zit E Z~(zi)}, ::t'<)' ({S(zit) 

continuous at zi ; 

(iv) s.(z.t) • f(U.(z.t), z.t E Zxu(z.) is smooth at z .• 
1 1 1 1 1 1 1 

Proof: 

Consider a neighbourhood Z~~z) for which conditions (i) and (ii) 

Qbtain, which implies that {U(z*) : z* £ z~.,,f(z)} is dense in an interval 

of reals containing U(z) (theorem 18): We distinguish two possibilities: 

(1) there exists a smallest interva1'1sczt) : zt £ Z~~z)} containing 

S(z) • The map of this interval into {U(zt) : zt £ Z~~z)} containa 

an interval containing U(z) and for all states z* in this interval 

S(~*) • S(z). The function f is thus in a neighbourhood Z~~(z) 
represented by a set of points in Ru x ~' which determine a unique 

curve (a straight line), because of the denseness of {U(z*) : z* E Z~~)} 
in an interval of reals R*. 

(2) there does not exist a smallest interval .:t' {S(zt) zt £ Z~~)} 
containing S(z). This implies the existence of an infinite number 

of nested intervals containing S(z), in {S(zt) : zt £ Z~~)}, 
which map into an infinite number of nested intervals containing 

U(z) in {U(zt) : zt £ Z~~)}. If this latter nest of intervals 

approximates an interval of {U(zt) : zt E Z~~)} then for this 

interval all the S values are equal to S(z): again we arrive at 

the existence of a horizontal S(U) curve-piece through z. 
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If this nest of intervals approximates U(z), then in a neighbourhood 

Z~ li'{z) the function f is represented by a set of points 

in Ru x R
5 

which determine a unique curve piece which may be 

discontinuous or may have a kink at U(z). Such discontinuities 

and kinks are, however, excluded by condition (tv). 

The existence of a uniquely determined, curve piece through 

z in Ru x RS, without discontinuities or kinks at z, implies 

the existence of the two-sided derivative (as) 
au x CJ 

It is naturally permissible to replace the conditions (i) - (iv) 

through stronger conditions. Such a set is the following: 

Sufficient conditions for the existence of the derivative 

[asil · 
au. 

l. x. 
L 

For all 

(i) 

(ii) 

(iii) 

Proof: 

at every state zi E Zi are: 

z. E Z.: 
l. l. 

Z~(zi) is 

s.(z.t) =-
1 l. 

locally connected in (R,~<) 

f(U.(z.t), z.t E zxu(z.), is 
l. l. l. l. 

(R,:7'<)' (R,·~«> continuous (or otherwise stated: 

S. (U.) is 
1 l. 

s. (z. t) .. 
1 l. 

continuous at every U.(z.t) : z.t E ZUX(z
1
.)) 

1 1 1 

f(U.(z.t)), z.t E zX0(z.) is smooth at all z. 
1 1 l. l. l. 

It will be immediately clear that condition (i) itnplies the 

conditions (i) and (ii) of theorem 23. 

In the case of a set Z~(zi) locally cconnected 1n (R, -:/<), 

a neighbourhood ~1VCzi) is completely occupied: this implies 

that for a smooth function S.(z . t) a f(U.(z.t)) local 
l. l. l. l. 
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( {U(z t): z t E Z~(zi) }, Y<> ( {S(zi t): zi t E Z~ (zi) }, J<) continuity 

and local (R, ':/<), (R, ':/<) continuity become identical. Thus 4.23 

(i) - (iv) may be replacedby 4-24 (i) - (iii) 

The conditions 24 (i), (ii) and (iii) can be illustrated geometrically. 

In figure L the thick uninterrupted parts of the U axis represent 

connected (in (R,J' )) subsets of ZXU(z.), thus occupied intervals of 
< 1 

the one dimensional U space. Interruptions are either unoccupied 

single points, or closed unoccupied intervals. Condition (ii): 

continuity of S(U)X leaves open possibilities for the S(U)X curve, 

listed below. Without condition (ii) the existence of a curve is 

not guaranteed at all. Condition (iii) restricts the possible 

properties of the S(U)X curve. Discontinuities and kinks at 

occupied points are excluded; however, at "missing states" they 

remain possible. The introduction of the maximum entropy principle 

in the next chapter will imply a further restriction for the shape 

of the S(U)X curve. 

Remark: The distinctions between the weaker conditions 23 (i) - (iv) 

and the stronger conditions 24 (i) - (iii) for differentiability are of 

a purely mathematical nature. Physically they are indistinguishable and 

it is therefore justified to choose the simpler and geometrically more 

transparent conditions 24 (i) - (iii), when differentiability is required. 

To simplify the terminology in the next chapter we will introduce a few 

"summarising" concepts: 

4.25 Def. The phase 

connected 

space LY. , ••• , X. • , ••• ] , k E N. is locally 
1 -K1 1 ----;n-------- - --occupied in (R,01) at z. (or r(z.)) iff ______ <_ 1 ... 1 

is locally connected in (R,':/«) at zi and 

(zi) is locally connected in (R, ':/<) at zi 



58. 

!he phase apace [µ., •• . , x.. • , 
1 -1c.1 

.. J, k £ N. is locally connected 
1 

occupied in (Rn,·~«> at all zi 
xiat a neighbourhood R

1
.lfCz.) 

E Z. means that for every state z. 
1 1 

occupied. 

4.26 Def. 

4.27 Th. 

... l. 
in phase space which is completely 

This is a consequence from the foregoing definition. 

The fur.:ction S.(z.,t} f(U(z.t, ••• , Xk.(z.t), ••• ) 
1 l. 1 1 1 1 

is (Rn, ':J <), (R,')I ) continuoU'Saiidsmooth at z-i iff: 

S. (z . t) • f (U.(z . t), z.t E zXki, k £ Ni(z.) is 
1 1 0 1 1 1 u. 1 

1 

(R, ':! <), (R, J<) - continuous and smooth at zi 

t t t U· XR.' R. e: N1·-k ( ) S.(z.) • fk(X. .(z. ), z. e: z~1, 1, z, is 
1 1 -1'1 1 l. • 1 

1 

(R,:1~), (R,~) continuous and smooth at zi for all k e: Ni. 

Similar definitions can be formulated for the phase space 

[$. , ... , x. . , •• J, k e: N. and for the function 
1 -lcl. 1 

t t U • ( z • ) • g ( S • ( z . ) , ••• , x. . ( z . ) , ••• ) • We arrive 
1 1 1 1 -1c.1 1 

thus to the final 11 summarising11 results: 

Sufficient conditions for the existence of derivatives 

[asi] 
au. 

1 Xk· l., 6 N. 
1 

and [
as· j 
ax~i . , X0 ., 1 £ 

1 .-.1 

at every state z . of a system Z. with phase space 
1 1 

@i, ~i, •• J , k e: Ni , are 

for all k, 

(i) the phase space LY. , ••• x.. . , •• J , k e: N. is locally 
1 -1c.1 l. 

(ii) 

connected i 4'ltN~ (Rn ';/<) at 11 z. e: Z. 
l. 1 

t t S.(z.) • f(U .(z. ), ··*~ . (~ . ) .. ~ ) is 
1 1 1 1 1 1 

crl1
• ";/<) p (R, Y<) Conti uous and mooth at all zi £ zi. 
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Sufficient conditions for the existence of derivatives 

[
au· ] 
~i s., 

]. 

for all k, at every 
Xn·• R. E N.-k 

A.l. 1 

state zi of a system Zi with phase space [§i, ••. , ~i, •. ~], 

k E N. are: 
]. 

(i) the phase space [$., ... :x.. • , •• .J, k E N., is locally 
1 -Kl. l. 

connected occupied in (Rn,~) at all zi E zi. 

(ii) U.(z.) = g(S.(z.), ... , X.. .(z.), ••• )is (Rn, J<)' 
l. 1 l. 1 -Kl. l. 

(R, J'<) continuous and smooth at all zi E Zi. 



CHAPTER 5: EXTREMAL PRINCIPLES, ABSOLUTE TEMPERATURE, ABSOLtrrE FORCES 

The aim of this chapter is to show the central part which the Gibbs 

maximum entropy principle and the "mechanical" minimum internal energy 

principle can play in the development of thermodynamics. 

In the firs~ paragraph a precise set theoretical statement of the above 

principles will be given, which avoids the ambiguities of traditional 

presentations. 

The "traditional" maximum entropy principle reads as follows: 

In an equilibrium state the entropy of a system is maximal compared with 

the entropy of neighbouring (non-equilibrium) states, which are obtained 

by allowed variations under certain constraints: ~SU, < o • 
• • ·~t ••• ' 

There exists in traditional thermodynamics no counterpart for the second 

principle. The Gibbs minimum energy principle, &J81 ···Xie• .•• ~ o, 

cannot be considered as such because it restricts itself to thermally 

boa>geneous equilibrium states. Different extremal principles are 

explained without investigating in their precise relationships. The 

second paragraph considers the conditions which enable us to demonstrate 

chat the hyper surface S.(U., ••• , x_ ., ••• )is convex upwards at every 
1. 1. ~lcl. 

"occupied1 point of the phase space ( Ui' ••• , Xici, ••• J, k e: Ni of a 

ystem Zi» as a consequence of the maximum entropy principle, and that the 

hyper surface ui(Si, ••• , ~i' ••• )is convex downwards at every zi, as 

consequence of the "mechanical" minimum energy principle. Again we 

find sets of sufficient conditions (in theorems 5, 6 and 7) which are 
"physi cally indistinguishable!" from stronger but much simpler conditions 

(in theorems 8 and 9). The results of the second paragraph lead to the 

UJO t important consequences of the extremal principles, namely that: 

~izj £ c0 (1.e. z1 and ~j are in thermal equilibrium) iff 

as.{z) as.(z.) 
1 ~ w --"'L.L 

~air- au. 
l 
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zi zj E C~k (i.e., zi and zj are in kth force equilibrium) iff 

au.(z.) 
l. l. 

a~i 

au.(z.) 
J J 

a\:j 

better a negative An absolute temperature function (or 

absolute temperature function) N(z.) -
l. 

1 
f(z.) 

l. 

and absolute generalised force functions 

can now be defined. 

recipr(>cal 
as.(z.) 

l. l. 

a u. 
l. 

These results can be obtained if certain conditions are imposed on 

the systems concerned. These conditions can again b~ chosen in 

different ways. In theorem 10 I list a weak set of conditions, 

in theorems 11 and 12 a strengtpened set which are identical with 

the strong version used for the proof of the convexity statements. 

The two sets are again physically indistinguishable. 

Finally, we investigate the conditions which lead to the fundamental 

equation T d Si a d Ui 1: Fk d ~i 
k EN. 

l. 



The two principles which form the core of this chapter are the 

Gibbs maximal entropy principle and the "mechanical 11 minimum 

energy principle. 

5.1 Ax. Maxi~ entropy pri.nciple 

For systems zi, zj £ X0 , 

z. with phase space R. a L. x ••• R._ • x ••• , p £ N. CN 
1 -1. -1Jl. --xpl. l. 

z. with phase space R. •Ru x ••• Rx x ••• , q £ N.CN 

( Jh N ' f-~ j ' d' 9j h d.ff J k' d w ere is a set o integers in 1cat1ng t e i. erent in s 

of deformation coordinates): z. z. £ c
0 
n .. . () C,i.. n ... , 

1. J - 'l'k 
k £ K C: Ni() Nj, i{f 

there exists a neighbourhood R .. /fCz. z.) in R. X R. space. 
-l.J 1. J -1. -J 

and there exists a set of paired deformation coordinates 

X.. • , X.. • , k £ K C: N. (\ N. associated with the connections c,.,. , 
-Kl -KJ 1 J "'K 

such that, for every z.t z.t contained in the neighbourhood 
l. J 

R •• ;fcz. z.) , 
-l.J 1 J 

if U.(z.t) + U.(z.t) • U.(z.) + U.(z.), 
11. JJ 1.1. JJ 

and x._ .(z.t) + x.. .(z.t) • x.. ,(z.) + x.. .(z.) for all k £ K, 
-lc.l. l. -lc.J J --kl. 1 -lt.} J 

and X0 .(z.t) • X0 .(z.), for all 1 EN. - K, 
~l. l. ~l. l. l. 

t and Xmj(zi) • Xmj(zj), for all m E Nj - K, 
. t t then S.(z. ) + S.(z. ) < S.(z.) + S.(z.). 

1.1 JJ '"'l.l. JJ 



5.2 Ax. 

5.3 
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For systems z., z. c: krJK;lq, 
1 J £ k 

with phase z. space 
1 

z. with phase space 
J 

z. z. £ ... . n c<Pk 1 J 

/ 

RSi R. a x ••• x ~pi x ••• 
-1 

R":' = RS x ••• x Rx . x ••• 
-J j qJ 
rl ... k £ K c::N.flN., 

1 J 

, 

' 

iff 

p 

q 

£ N. C N, 
l. 

£ N.G N: 
1 

there exists a neighbourhood R.". /VCz.z.) in R:x R:'°space, 
... l.J 1 J -1 -J 

and there exist sets of paired deformation coordinates 

X.. • , X, • , k £ K C: N. n N. associated with the connections C,..., k, 
--kl KJ 1 t J t y 

such that, for every z. z. contained in the neighbourhood 
1 J 

R."". N(z.z.), 
-1J 1 J 

if S.(z.t) ~ ~.(z.) and S.(z.t) a S.(z.), 
1 1 l. l. J J J J 

t t and X.. .(z. ) + X.. .(z.) = X. .(z.) + X. .(z.), for all k £ K 
--kl. 1 -l<J J -1<1 l. --kJ J 

t and Xn.(z. ) a Xn.(z.) for all R. £ N.-K, 
N1 1 Nl. l. 1 

and 

then 

X .(z.t) 
mJ J 

t 
U. (z. ) 

l. l. 

a X .(z.) 
IDJ J 

t + U. (z. ) 
J J 

for all m £ N.-K, 
J 

) U.(z.) + U.(z.). 
l. l. J J 

The minimum energy principle has to be distinguished from the 

"Gibbs minimum energy principle" which says that an equilibrium 

state z.z. of two systems which are thermally and force connected 
l. J 

is a state of minimum internal energy compared with neighbouring (non-) 

equilibrium states, under certain constraints, or more precisely: 

Gibbs minimtml ener~y princ~~ 

For systems Zi, Zj c: :;z:.8 n~k 
z. with phase space R. = R_ _. x···x R__ • x•••, 1 -1 -u1 --xp1 
z. with phase space R. = R._, x•••x R__ x•••, 

J ... 3 -lJJ -"Xqj 

z . z . c: c n ... n c k n .... , k c: K c: N • c: N , if f 

p c: Ni C: N 

q £ N. C:-N: 
J 

13 G cp 1 

there exists a neighbourhood R. x R. ~z.z.), and 
-1 -J l. J 

there exist pairs of deformation coordinates ~i'~j' k i:: K c:u.n i~., 
l. J 



s.4 l'h. 

1ssaociated '\lith tl1e connections C<j>k' such that 

for every z
1
.t zJ.+ contained in R. x B· tf'cz.z.) : 

-1 J 1 J 

if S.{z.t) + S.{z.t) • S.(z . ) + S. (z.) 
11 JJ 11 JJ 

t t and x.. • (z. ) + X. • (z. ) • x.. • (z.) + X. • (z.) for all k e: K 
-Kl. 1 -1'J J -""k1 1 -KJ J 

t and Xn.(z. ) • Xn.(z.), for all R. e: N.-K 
~]. 1 ~1 1 1 

and X • {z. t) 
mJ J 

then U. (z. t) 
1 1 

• X • (z .) 
mJ J 

+ U. (z. t) 
J J 

for all m E N .-K, 
J 

> U.(z.} + U.(z.) 
, 1 1 J J 

The "mechanical" minimum energy principle applies in the above 

formulation to systems for which an entropy function is defined. 

It may be that this entropy function s. is trivial in the sense 
l. 

that all states are reversibly adiabatically accessible and 

thus all states z, E Z. have the same entropy. 
1 l. 

Let us call such systems 11purely mechanical 11 and collect these 

systems in a set Z M • 

For such systems the minimum energy principle reduced to the following 

statement: 

For sys t ems Zi' Zj E () K :{ <Pk(\ x M 

z. wi th phase space R ...... x R__ . x ••• 
1
p EN. C:N 

1 -1 --xpl. 1 

z. wi th phase space R. • ••• x Rx . x • • • ,q EN. C::N: 
J -J q] J 

for every z . z . E • • • C "'k • • • k E K C: N . 0 N. , 
l.J 'I' , 1 J 

there exists a neighbourhood R .. }{"(z.z.} in R. x R. space, 
-1J 1 J -1 J 

and t here exist sets of pai red deformat ion coordinates 

~i ' ~j ' k e: K C: Ni 0 Nj ' associ ated with the connections C<f>k' 
such that fo r every z .t z .t contained in the neighbourhood 

1 J 
R • • >( (z. z .), 
... 13 1 J 
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if~.(z. i" ) + ~. (z. t ) IC ~· (z.) + ~. (z.), 
l. l. J J l. l. J J 

and X.£.' (z. i ) = X,e; (z.) for all R. £ N. - I'., 
l. l. l. l. l. 

and X . (z. "i" ) = X • (z.) for all m £ N. - K, 
IDJ J IDJ J J 

then u. (z. ·r) + U. (z. t ) > U. (z.) + u.(z.). 
l. l. J J 

, 
l. l. J J 

It will be clear that this theorem can be interpreted as 

the minimum energy principle of mechanics. It is thus 

a special case of the more general minimum energy principle 

(ax. 2). This is of interest for an investigation of the 

relationships of thermodynamics and mechanics. 

It is not my intention to give here an analysis of these 

relationships, or of the inter-relations of the four principles. 

formulated above. Only the first two will be used, and these are 

independent in the framework of this axiomatisation. 
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Convexity 

I shall now develop the main consequences of the maximum entropy 

and mini.mum energy principles. I give the theorems in their 

simplest form to avoid complicated notations: 

5.5 Th. For a system Z £ :.
0

, with phase space [u, x] and such that the 

conditions 4.23 i-iv hold: 

the curve S(U)X de~cribing un~quely the function 

S(zt) • f(U(zt)), zt £ Zx(z), is convex upward• 
u 

at every occupied point U(z). 

Proof: 

We have already shown (4.18, 4.23) that the conditions 

23. i-iv imply that for all z £ Z a neighbourhood Zx Ncz> ia 
u 

denae in a neighbourhood ~J({z), and that the occupied point• of 

the latter form the domain of a function which ia represented aa 

a subset of a unique curve S(U) which ia continuous and smooth 

at every U(z). We say that "the curve S(U) describe& uniquely 

the function S(z t) • f (U(z t)), z £ z:(z)". There exists thus 

a neighbourhood Rx Nez) t:: Rx N(z) such that the s (U) curve 
u u 

in this neighbourhood is continuous and smooth at all points of 

U space. The convexity upvard of thb curve at & follows 
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A similar theorem, and proof, can be o~tained by carrying out the 

substitutions U + X and X + U in the above theorem and proof: 

5.6 Th. For a system Z E~0 n,t<P with phase space [u, x] and such that 

conditions 4.23 i-iv (X substituted for U and U for X) hold: 

the curve S(X) describing uniquely the function S(zt) • 
u 

t f(X(z )» zt E Zu (z), is convex upwards at every occupied x 

point U(z). 

The minimum energy principle (ax. 5.2) gives the following theorem: 

5 . 7 Th. For a system Z E .Z 8 with phase space [s, x] and such that 

conditions 4.23 i-iv (X substituted for U and S for X) hold: 

the curve U(X)s describing uniquely the function U(zt) • 

g(X(zt)), zt E Z8 (z), is convex downwards at every occupied 
x 

point X(z). 

We may replace the conditions 4.23 i-iv by the stronger conditions 

4.27 i-ii which leads to the simplified and physically equally 

weak version: 

s·.a Th. For a system Zi E ken .. . (),Z<Pk n ..... with phase space 

[up ..•. , ~i' •••• ],kc Ni and such that: 

(i) this phase space is locally connected occupied in (Rn,!!<) 

at all z. E z. 
l. l. 

(ii) Si (zi) • f (Ui (zi), ••• , ~i (zi), ••• ) is (Rn J <), (R,.1<) 

continuous and smooth at all z, E z.;/the hypersurface S. 
l. l./ l. 

Si(Ui, ••• , ~i' ••• ) in the space ~ix R8i is convex upwards 

at every occupied point of R .• 
-1. 

Similarly we arrive at: 
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For a system z. e: 
l. 

('\ 1.. <f>k, with phase space 
k e: N. 

k e: N. and such that: 
l. 

l. 

[si' ... ,~i ... ) 

(i) this phase space is locally connected occupied in 

(Rn, :J<) at all ·z. e: Z. , 
l. l. 

(ii) U.(z.) a g(S.(z.), ••• , X. .(z.), ••• )is (RnJ<)' (R, J < ) 
l. l. l. l. -Kl. l. 

continuous and smooth at all z. e: Z.: 
l. l. 

the hyper surface U. (S. , ••• , X. • , ••• ) in the space R. ; x R__l.. 
l. l. -Kl. -i. -11 

is convex downwards at every occupied point of R. ;. 
-l. 

The above two theorems are illustrated in the following figures 

(fig. 5.1, 5.2) which give S., u. and S., X... intersections of 
l. l. l. -Kl. 

the space R. x R5 and an u.,x.. intersection of the space 
-i. • l. -1u 

R· x R__. (the spa~es R. x R5• and R.; x R__. are identical:) 
;.."]. -lJl. ""']. l. ""'1 -lJl. 
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' 
'I 
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:2 Absolu~e te~era~u~e, absolute forces 

Next I shall prove that, under certain conditions, for two 

systems Zi and Zj: zi zj c c0 (i.e., the systems ar~ in thermal 

equilibrium) iff 

as. Cz.) 
1. 1. 

a u. 
1. 

- as. (z.) 
J J 

a u. 
J 

Again we can choose weaker and stronger conditions, making tbe1 

· theory more or less complicated. I will prove the theorem 
I .'// l 
tlr# starting from a weak set of conditions, and then show that a 

stronger set is mathematically more transparent and convenient 

and physically more acceptable. Again also we give the theorem 

for the case of systems with simple phase spaces to avoid 

non-essential complications in notation: 

5.10 Th. For systems z., Z. £ Z.. 
8

, with phase spaces (u., x.. • ] and 
i. J i. --iu 

(u. , X11 • l and such that 
J 11.J 

(i) - {iv): the conditions 4.23 i - iv 

(v): 

~~Oof: 

('"/ z. , z . ) if z. z. E c8 then 
1 J 1. J 

(~zXk J{ {z.), z XR,Ncz.)) c3 z ... , z ..... , z . '", z ..... ) u 1. u J 1. 1. J J 

(z.', z.'"' £ Z xk){(z.) & z ... z ..... £ Z xR. >f'cz.) & 
1. 1. u 1. l J u J 

U. (z ... ) < U. (z.) < U. (z. """) & U. {z. '") < U. (z.) < U. (z ..... ) 
1. 1. 1 1 1. 1. J J J J J J 

& U.(z.') + U.(z.") • U.{z ..... ) + U.(z.') = 
1. 1. J J 1. 1. l J 

u.(z.) + u.(z.) ) 
1 1. J J 

iff 
[
asi(zi)J 

a u. 
1. 

[ 

as.(z.) l J J 

a u. 
J 

.. 

Conditions i - iv - together vixh the maximum entro~ .. prini.ple - imply 

that the function S. (z.) iu f (U. (:t.)) for a tio~iu Z~ ' · X (:t.) is 
i 1. i 1 1. 

described by a contin!ous and sinooth curv i ~hrough zi in the plane 

f. 
I 

. ·, 
, , . ...... 

· .. "-·/' 

. .. ~ .. ' . l . .. 

; 

\ 

' ' 
·'" .. 
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~ x RS which is convex upwards (see figure 5. 3). A similar 

conclusion follows for t he function S.(z.) • f (U . (z . )) 
J J J J 

Suppose z. z , £ c0 and 
1 J 

as . (z,) 
1 1 > 

as . (z.) 
J J 

a u. a u. 
> 0 

1 J k 

Condition v guarantees that every neighbourhood Z~ ~Kczi) and 

z~t .,..q'fzj) contains states zi', zj' such that 

U· (z .... ) • u. (z.) + 6. U , u. (z . ') • U. (z.) - 6. U. 
1 1 1 1 J J J J 

But the 

above supposition implies that there exists in every neighbourhood 

of these kinds states z.', z.' such that also: S.(z. ') + S.(z.') m 
1 J 1 1 J J 

$.(z.) + 6. S. + S.(z.) + 6. S. :d S.(z.) + S.(z.) + 
l l 1 J J J 1 1 J J 

as.(z.) 
1 1 

a u. 
1 

u -
as. (z.) 

J J 

a U· 
J 

u > S.(z.) + S.(z.). 
1 1 J J 

contradictory to the maximum entropy principle. The only supposition 

which can be reconciled with the maximum entropy principle is 

z. z . £ c0 and 
1 J 

Suppose 

The convexity of 

as.(z.) 
1 1 

a u. 
1 

as.{z.) 
1 1 

a u. 
1 

the curves 

-
= 

i and j has 
, ... on these for all states zi , z. crrves, 

J 

U. (z. ') < U. {z.), U. (z .... ) + U. {z .... ) 
l 1 1 1 l l J J 

U • (z ·) + u.(z.): S. (z. ') + S. (z .... ) 
l l J J 1 l l. l 

as. (z.) 
J J 

a U· 
J 

as. Cz.) 
J J 

a U· 
J 

an immediate 

such that 

-
consequence that 

' S.(z.) + S.(z.) 
l l. J J 

and thus, according to the maximum entropy principle, z. 
l. 

Condition v again guarantees the existence of the states 

every neighbourhood. Cl 

Similar conditions, imposed on systems z. , Z. 
]. J £ xe ('\ xcf>k lead to: 

[:s~:i>J u. 
1 

[
as.{z.)J = J J 
a ~j u. 

J 



5.11 'th. 

m:.:d aimilar conditio s for systems z .• 
1 

s. 
J 

The theory can again be simplified considerably. The condition 

v of theorem 10 is an implication of condition 4.27 i. We have already 

seen that the conditions 4.23 i - iv, which appear again in theorem 10 

are implied by conditions 4.27 i and ii. We can replace the conditions 

10 i-v through the conditions 4.27 i, ii 

This strengthened se~ of conditions is again physically not dist~nauishable 

from the five conditions of theorem 10 

b 
We arrive thus at the following theorems: 

For system Z. , Z. £ d., 0(l t,,_k, k £ K C: N. (l N. , 
1. J 'I' 1. J 

(K may be empty, then 

••• ],p£Niand z., z. £d.-8>, with phase spaces (u., ... , X ., 
1 J 1. pl. 

(uj' ••• , Xqj' ••• ], q £ Nj, such that 

(i) 

(ii) 

the phase space (u., ..• , X ., ••• ] is locally connected 
• 1. pl. 

occupied in (Rn1 , j<) at all z. £ Z. and the phase space 
1. 1 

(uj' ••• , Xqj' ••• ], q £ Nj is locally connected occupied in 

tanj, J<) at all zj £ zj 

S.(z.) • f.(U.(z.), ••• , X .(z.), ••• )is 
1 1 1 1 1 pl 1. 

(Rni,:J<), (R,!J<) continuous, and smooth at all z. £ Z.; 
. 1 1 

Sj(zj) • fj(Uj(zj) ••• , Xqj(zj)' ••• )is (Rnl,~<), (R,J<) 

continuous, and smooth at all zj £ Zj 



a 

5.12 Th. 

(i) 

(ii) 

- J J 

all p £ N. 
l. 

[
as. (z.)l 
au. 

J X . all q £ N. 
qJ J 

-
U. ,X • ,all p £ N.-k 

l. pl. l. 

ps. (z.)J 

u J J J 
a X\tj U.,X .,all q £ N.-k 

J qJ J 

For systems Zi, Zj£ :t~k' k £Ni (°'\ Nj' with phase space 

rs. ; x . , ... J , p £ N. , and [s., ... , x . , ... J , q e; N. such that 
L.: l. pl. l. J qJ J 

the phase space [s., ... , X • , ••• ] , 
1. • pl p £ N. is locally 

l 

connected occupied in (Rn1
, ~) at all z. £ z., and the 

l. l 

phase space [s. , ... , X • , ••• J , q 
J qJ. 

£ N. is locally 
J 

connected occupied in (RDJ, ';;/<) at all z. £ Z. 
J J 

U.(z.) • g.(S.(z.), ••• , X .(zi), ••• )is (Rni, ";:/<), 
l. l. l l l. pl. 

(R, ';f<) continuous, and smooth at all z. £ z., 
l. l. 

n· ~ 
U.(z.) •g. (S.(z.), ••• , X .(z.), ••• )is (R l, v<), 

J J J J J qi J 

(R, :Y<) continuous, and smooth at all zj £ z. 
J 

iff 

s., X ., all p £ N.-k 
l. pi l. 

S., X ., all q £ N.-k 
J qJ J 

-



5.13 Def. 

5.14 Def. 

l;c;;:r;t v~ intitoduce th6 concepts w•n gative r-eciprocal absolute 

temper ture" and "absolute force". 

The "negative reciprocal absolute temperature function" of a system 

z., which fulfils the conditions of 4.27, is defined by: 
1 

N(z.) 
1 T(z.) - 1 1 

1/ [as.(z.)J 
1 a u. 

1 X • , all p E N. pi 1 

The "absolute generalised kth potential function" of a system 

z., which fulfils the conditions of 4.27, is defined by: 
1 

S. , X • , all p E N • -k 
1 p1 1 

Theorem 5.11 justifies the name "absolute temperature" for the function T(zi) 
, ' . . ... ~ . . 

The ~value ·of the irartial ·deriv~ive· as.(z.) 
1 1 

a u. 
1 

is uniquely defined through the temperature equivalence class to which 

z. belongs, and this equivalence class consists of all states 
1 

z •• z., z.. of systems z., Z., Zk, ••• E~e· This justifies us also 
1 J k 1 J 

in writing T(z.) in place of T.(z.). In case of the entropy and internal 
1 1 1 

energy the values S.(z.) and U.(z.) are dependent on the choice of the 
1 1 1 1 

state zi(o)
8 

and zi{o)u, which choice is, until now, considered as 

arbitrary. In case of the deformation coordinates ~i the situation 

is more complicated. If deformation coordinates are defined via 

isolations, similar to the entropy and internal energy, then te same 

applies. 

I 

I 
I 

\ 

\ 

\ 
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Every system which fulfils the conditions of theorem 4.27 can formally 

be used as an "absolute thermometer". Weaker conditions will suffice: 

only the conditions of differentiability of Si(zi) • f(Ui(zi)) are necessary. 

Absolute temperature values for all states of all systems belonging 

to .Z 6 can be defined if the following holds: 

5.15 A7.. There exists a set of systems .ZT c.Z6 for which the conditions 4.27 i,ii 

are fulfilled, and such that for all z, £ z. c.Z6 there exists a state 
1 1 

z. £ Z. £ZT such that z. z. £ c6 , i.e., /t 0 is "measurable with the 
J J 1 J 

set of absolute thermometers ~T 

Again the following weaker condition is sufficient: "there exists 

a set of states ZT • { ••• zi' ••• zj, ••• }such that for all zT £ ZT, 

asT(zT) 

a UT 

exists, and for all zi £ Zi £~8 there exists a zT such 

that zi zT £ c8• 

With respect to the absolute potentials Fk and "absolute dynamometers" 

similar remarks apply, and we make the assumption: 

5.16 Ax. There exists a set of systems ~Fk c:.Z~k such thatZ~k is measurable 

with the set of absolute dynamometers.:lFk" 



he last results that we give in this chapter do not require much 

conment : 

5.17 Th. For systems Zi wi t h phase space [ui, ••• , ~i' ••• ], 

k £ N. for all states z. such that 
1 1 

(i) 

(ii) 

(a) 

(b) 

the phase space liJ i, ••• , ~i , • • J , k £ Ni, is connected 

occupied in (Rn, tf ) at zi. 
< 

t . t t ')(le 
S.(z. ) • f (U.(zi ), z. £ ZU, all k £ N. ( ) and 

1 1 o 1 1 1 zi 

S ( t) f (X. ( t)) t £ ZU,Xn all n N k and i zi • k -Ki zi ' zi X ~, ~ £ i- Cz
1
) 

Ui(zit) • stt<Xici(zit)), zit £ Z~xt, all R. £ Ni-k(zi) 

are (R, J'<) , (R, -%> continuous and smooth at 

[asi <•1> l 
a ~i 

dS.(z,) 
1 1 

U., X,e:, all 
1 1 

1 . -T(z,) 
L 

[ as. (z.) 1 1 
"" -

t £ N.-k a ui 
1 

Fk(z.) 
- 1 

T(z.) 
1 

where d S.(z.) is a differential at z, etc. 
1 1 1 

z. 
1 

auicz1> 

a ~i l • 

Defining d Q : T d S. and d W : E Fk d X. i it follows 
1 k £ N. -K 

1 

that at z.: d Q •du. - d W. 
1 l. 

We use the weak cocidi t i ons (ii ) rather t han the stronger conditions 

of theorem 4.27 and 4.28 to allow appl ication of the theorem at 
states z· where S.(z,) is maximal (see next chapter). 

l. 1 l 
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CHAPTER 6: PROPERTIES AT EXTREME TEMPERATURES, THE THIRD LAW 

This chapter is an investigation of the properties of systems in 

the domain of infinite absolute t emperature, T • ..:!:. 
00 , or better N s o, 

and in the domain of low temperatures, T + o, or better N + - 00 and 

N + + 00 • The results are derived for a special class of the systems 

already considered in the last chapter, characterised by the extra 

properties that their phase space [ui, ••• , ~i, ••• J , k E Ni, is 

completely occupied in an n.-dimensional domain, and that the extremal 
l. 

principles have the strengthened form o SU,X < o and o USi, Sj, X 
> o. 

This implies strict convexity of the S(U)X' S(X)U and U(X) 5 curves, 

which have possible shapes as illustrated in the figures 1, 2 and 3. 

The possible shape of s. (U., 
l. l. 

... ,. 
we are interested is less obvious. 

~i' ••• ) hypersurfaces, in which 

For the simple case of a two-

dimensional phase space [u.' x. .] l. -10: a geometrical illustration can be 

given. The figures 4, 5, 6, 7, show possible shapes, those of 

figures 8, 9 and 10 appear to be inconsistent with the extremal 

principles. A more formal result is given in theorem 3 which states: 

• 0 and 
N • o, x.H [asi] 

au . 
l. N • o, XH 

Next we demonstrate that lower and upper bounds for the Ui and ~i 

variables are an implication of a lower bound of the entropy Si· 
The latter statement, which is introduced as an axiom, leads also 

to lim 
T + o 

c • o. 
v Positive temperatures are associated with 

a lower bound for the internal energy, and negative temperatures 

with an upper bound for the i nternal energy. Finally we formulate 

• 0 

the assumptions, which together with the foregoing cover the content 

of the tradi t ional f ormulation of the third law. 
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figure 6.4 figure 6.5 

s 

u u 

figure 6.6 figure 6.7 

-fjgures 6.4-7 possib1P. shapes of the S(U,X)-surface in the case 

of a :rhase space [u,x] 
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figure 6.8 
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figur.~ 6. 10 
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figure 6.9 

figures 6.8-10 : impossible 
shapes of the S(U,X)-surface 
tn the case of a 1hase space 
U,X • The orientation of 

the coordinate axes U and X 
is chosen different from 
that in the figures 6.4-7. 
ThP- shapes are impossible 
because the curves 1 and m, 

contradict the minimum 
energy principle. 
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We consider the set of systems ~: C. :Z::0 , with t he 

following properties: 

(i) the systems Zi e: ~ have a phase space 

(ii) 

(iii) 

[up • • • , ~i> • •• ] , k e: Np which is globally 

connected occupied in (Rni, :!<), i.e. the occupied 

points fill a connected n.-dimensional domain of 
l. 

phase space without frontier. 

the function S.(z.) • f (U.(z.), ••• , X. .(z.), ••• ) 
l. l. l. l. -1<.l. l. 

is (Rni, ~<),(R, ::/<) continuous, and smooth at 

all z .• 
l. 

a strengthened form of the maximum entropy and 

minimum energy principle holds: namely the 

tinequality signs ~ and ~ in axioms 5.1, 5.2 

are replaced by < and >. 

The following theorem follows innnediately: 

If z. £ :t!0 then if z: 
l. l. 

C.. Zi and if the phase space 

Urp ... , Xitt> •• J ' k & Ni is globally connected occupied .. .. ,..,,.,, 
by z., then z. £"'-'a. 

l. l. 

* The physical interpretation of the set~ requires special attention 

for the third property. The property (i) is in general tacitly 

assumed in physical thermodynamics. It is important to notice that 

's., ... , X. • , •• :r is not assumed to be necessarily a phase space 
~ l. -1<.l. :1 - -
of :ti'; this leaves open the possibility of the existence of 

0 • I • • 
states of maxi.mum entropy. The factthat the occupied domain 

of phase space has no fronti e r i s mathematically very useful. 

The intuitive acceptance, in a physical approach of frontiers 

for the occupied domain clashes wi t h t he mathematical usefulness 

of a r efutation of a frontier. The existence and 
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noa-existence of a frontier are. however, not physically distinguishable. 

The property (ii) is generally assumed for all physical systems contained 

in :t0• 

I will not explain how far condition (iii) ~~eludes systems contained 

in .%0 in its physical interpretation. The condition implies strict 

convexity upwards of the hypersurface S(Ui, ••• , Xiti' ... ) and thus 

a2s. 
1 

a u. 1 
1 

< o, etc., i.e. au 
aT > 0 etc. 

Jor the systems Zi £ ~ a few interesting properties can be derived: 

For systems Zi £ ~ : 

and 

Proof: 

[
asi Czi>J 
a Xiti N(z.) • o, Xn·• all 1 £ N.-k 

1. ~1 1 

• 0 

N(z.) • o, Xn•• all 1 £ N.-~ 
1 ~l. 1· 

Xn.: ,R. £ N.-k 

- o, 

Ti }1.,.1.. i· 
Consider the subspace L!Ji• ~i], containing zi' or 1\r., x.. (zi) 

l. -tcl. 

(i.e. !:i £ [!Ji' ~i] iff !i £ [!Ji' .•• , XJci, •.• ] , k £ Ni and 

X0 . (r.) • X0 .(z.)). 
1111 -1 .1111. 1. 

For th states (occupied points) in this subspace 
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the strengthened maximum entropy principle and minimum energy principles 

hold, and Si (Ui, ~i) is (~, ~<), (R,~)-continuous and smooth at all 

occupied points of the subspace 

N(z.) • o i.e. 
l. 

We consider the two possibilities 

u. 
l. 

- 0 

- 0 

u. 
l. 

+ o and 

+ o then (see figure 8) the plane of constant 

u. 
l. 

entropy through z. intersects the surface S.(U., x. .) in such a way 
l. 1 l. -Kl. 

that, at z., a straight line parallel to the U. axis is a tangent of 
l. l. 

the u.(x. .)
5 

curve. 
l. -ltl. • 

l. 

One of the parts of this curve which has z. as 
l. 

its frontier is thus convex upwards and this contradicts the energy 

minimum principle. 

Iqus - o. Because at z. also 
l. 

we are left with two possibilities: S.(z.) is an absolute maximum 
l. l. 

- 0 

(see figure 9) or in every neighbourhood of zi in [ui, Xiti] are states 

z.' such that S.(z . ~) • S.(z . ), i.e. either there exists a neighbourhood 
l. l. l. l. l. 
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2 i Xki ~i) of etates of equal entropy or the states 

{z.': S.(z.') • S.(z.)} form a curve through z
1
• (•ee figure 10). 

1 1 1 1 1 

If s.(z.) is an absolute maximum then (see figure 9) below this 
1 1 

state z. there exists a plane of constants., such that the 
1 1 

intersection of this plane with the S.(U., X.. .) surface is a clo1ed 
1 1. -lcl. 

continuous and smooth U.(X.. .) curve, which contradicts again the 
i. lei Si 

convexity downwards everywhere of the U.(X. .) curves in general. 
1. -lcl Si 

An R1-neighbourhood of states of equal entropy contradicts the 

strengthened maximum entropy principle. The only possibility left 

is thus that the states of maximum entropy in a neighbourhood of 

z. form a curve. 
1 

[
asi cz/ >] 
a u. x. 

1 -id 

And, for the states z.t of this curve: 
1. 

• o, _ . - it is the isotherm N • o. Thus, 

along this isotherm the entropy is constant: 

• 0 and 
- 0 

Next we direct our attention to the domain {z. : N(z.) + - ~} • 
1 l 

D 

{z. : T(z.) + o} and consider the implication of the following axiom 
1 1. 

For all z. £ ~, : {S.(z.) : z
1
• E Z

1
.} has a lower bound. 

1 e 1 1 

Remark: {S.(z.) : z. £ Z.} cannot have a minimum value because, 
1 1 1 1 

if there exists such a value, ay r, and S.(z.') • r then 
1 1 
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assumption that this is an open interval of reals. 

We have, however, to remember that the last assumption was introduced 

for reasons of mathematical convenience, and that therefore it is not 

permitted to give physical significance to the statement that a state 

with minimum entropy does not exist . The formulation of the axiom 

leaves both possibilities open. 

{U.(z.) : z. £ Z.} has a lower bound in the domain {z. N(z.) < o} 
1.l. 1 l. l. 1 

and an upper bound in the domain {z. : N(z.) > o} 
l. l. 

Proof: 

For reasons of convenience we restrict the proof to systems with a 

two-dimensional phase space @i, xD : Consider a curve S.(U.) , which 
i l. X· 

1 

is continuous, smooth, and convex upwards everywhere. 

( ) S h h . d as. a uppose t e curve as no maximum, an ~-1 > o. 

au. 
l. 

Choose a state z.. N(z.) < o; T(z.) > o 
1 l. l. 

( ') U ( ) S. (z. ') U. z. - . z . • 1 Ji T d S. 
l. 1 1 1. 1 

S. (z . ) 
1 1 

A greatest lower bound of {U.(z .t) : z.t £ ZU.X(z.)} will be 
1 l. l. l. 

approximated , when S.(z.t) approximates the greatest lower 
l. l. 

t t x bound of {S.(z. ) z. E Zu(z.)} 
1. 1. 1 1 



(b) 

(c) 

t t x Then inf {U(z) : z. £ Zu(z.)} - U.(z.) • 
1 ~ 1 l. 1 

s.(z.) is finite for all z.; p is finite; 
1 1 1 

J 
s. (z.) 

l. l. 

t o < T(z. ) 
1 

T d S. 
1 

~ T(z.) 
1 

if p < S(zt) < S.(z.) ; U.(z.) is 'finite; thus 
'l.l. l.l. 

J 
S. (z.) 

l. l. 

If the curve S. (U. >x has no maximum, and 
1 1 i 

a similar proof leads to: 

t t x sup {U(z ) : z £ Zu.(zi)} is finite 

is finite 

< o then 

Suppose s.(U.)X has a maximum at z.•. Choose a state z,' on the 
1 1 i l. 1 

curve such that U(z.') < U(z.*) and consider {zt: U.(z.t) < U.(z. ~)}. 
l. 1 1 l. 1 1 

The proof of case (a) leads again to: inf {U(zt) : U.(z.t) < U.(z. ~)} 
1 1 1 1 

is finite. Similarly we find for a state U.(z.'') > U(z.*) : 
1 l. 1 

sup {Ui(z.t) : U.(z.t) > U.(z. '') is finite. [J 
1 1 1 l. 1 

A similar theorem can be derived with respect to the variables ~i in the 

d • Fk. d Fk omaina T + - oo an T + + co 

6. 6 Tb. lim 
N + - oo 

lim 
T + o 

Cy • 0 
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Consider a curve S. (U. )X. 
l. l. 

Call the greatest lower bound of S., which is assumed to be 
l. 

approximated if N + - m (T + o): S.(min) 
l. 

S(z) S(min) • 

T(z) T 

1 dS. au. I 1 
l. l. d T T -

0 au. aT 0 
l. 

Now S(z) - S(ID;in) • finite; thus 

T 

dU· 1 

dT 

J •v d .ln T • finite, and this implies that 

0 

lim CV • 0 

T+o 
D 

T 

d T • 1 C.,, d in T 

0 

The content of the "third law" of thermodynamics is covered by the foregoing, 

and the following statement of axiomatic character: 

6.7 Ax. lim 
[asi Czi> J T (z.) +o - 0 

1 a u. N(z.) < o l. T 
l. 

lim 
[asi] T(zi) ... 0 .. 0 

N(z .) > o ax. T l. 
l. 
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CHAP'i'E& 1 1 R CRH' ClSM O!i" G. FALJC AND lt. JUNG. AXIOMATIICDElt 

THEIUl>DYNAMIK, Handbuch der Physik Bd. III/2 p.119-1 75 

Berlin, 1959. 

Falk and Jung's article in the Handbuch der Physik is closely related 

to the axiomatization of the foregoing chapters. The introduction of 

connections as equivalence relations and isolations as equivalence or 

order relations of different kinds, the definition of extensive 

variables entropy and internal energy on the basis of the fundamental 

properties of the isolations, the use of extremal principles, which 

relate the connection variables and the isolation variables, the 

definition of absolute temperature and the derivation of the 

fundamental thermodynamic equations are common traits. Much of 

the inspiration of my axiomatisation is derived from Falk and Jung's 

work. 

A critical valuation of Falk and Jung's article meets the difficulty 

that the proofs of many theorems, which they establish on the basis 

of the given axioms are not demonstrated explicitly or only!ketched. 

Extra axioms are certainly necessary, and presumably they are omitted 

because, measured with the standard of rigour of the article, they are 

certainly self-evident . For instance, the "zerfallen._;le Ubergangs 

relationen" are not explicitly endowed with the rdl.exive property. 

This property, added to symmetry and transit ivity, makes these 

relations identical with equivalence relations and this certainly 

is the iotenti a. 
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The critical remarks of this chapter are of different kinds. 

I will investigate whether the theory is consistent and whether 

the given axioms are sufficient and necessary for the purposes 

which they serve. Criticism of another kind concerns the 

physical relevance of the chosen axioms. Following Falk and Jung's 

article we firstly investigate the metrization axioms of ~ff 5 Y 

and secondly the main chapter of the article "B. Die Struktur 

der Thermodynamik". The comments follow the division of this 

chapter : I ~ntropie und Energie, II Die thermodynamischen 

Koordinaten. 

The Metrization axioms 

A comparison between the metrization axioms of z_j.ff 5 y and the 

metrization axioms for internal energy of our axiomatization forces 

itself upon us. 

It can be proved that the properties z_iff 5 y (i), (ii), (iii), (vii) 

and the reflexivity of the energetic isolation implies : z.'{u) z."'' iff 
1. 1. 

z."' z.{u) z."' "" z. {axiom 3.3·i.) The relation between Falk and Jungs 
1. J 1 J 

metrization axioms and the two others in our approach {axiom 3.3 ii, iii) 

zi 1 zi n {u) permutation zi 1. ••• zi n 

if z. 
1. 

Z. "' {u) ,. ,. ,. ,. h ' { ) ,. " 
1 

z. • •• z. ten z. u z. 
1 1 1. 1. 

is not completely clear. Possibly a construction of rigorous proofs 

of the theor ems of Falk and J ung will show that they are tacitly 
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aesumed. If not, then they will follow from the given properties 

(i), ••• , (viii), because they can be considered as an immediate 

consequence of the additive properties of the internal energy 

functions Ui whose existence is stated to be an implication of the 

above properties. 

It can further be proved that the properties 5 y (iv), (v) imply: 

(\:/z.' z.'') C3 z.) (z.' z.'' (u) z. z.). 
1 1 l. 1 1 1 1 

This latter property 

is in our axi.omatisation restricted to an energymeter, in Falk and 

Jung's article it is assumed for all systems. Property 5 y (vi) 

implies that all energy values U.(z.) of a system can be written 
l. l. 

as dyadics on the basis of a unit energy difference between two 

arbitrary chosen states of this system. Property 5 y (iv) 

guarantees subsequently that all energy differences between states 

of arbitrary systems have dyadic values, compared with the chosen 

unit of internal energy, and this implies that all systems are 

"U-measurable" with respect to the first system. 

The relationships between Falk and Jungs metrization axioms and ours 

being clarified to some extent, a few critical remarks can be made. 

Falk and Jungs metrization axioms are certainly too strong for the 

purpose for which they are meant. The authors themselves are conscious 

of the possibility of restricting certain properties to special systems, 

which will be used as energymeters, and that the boundedneaa of the 

domain of energy value& requires another weakening of the axioms 

(notes p.132 and p.142) . 
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The property (vi) is physically acceptable, only if we assume that 

non-dyadic energy values are indistinguishable from approximating 

dyadic energy values. If we wish to maintain the distinguishability, 

then the halving procedure does not define energy values of 

non-dyadic energy classes. In this case we are forced to have recourse 

to refined theories of the type developed in the third chapter. 

Die Struktur der Thermodynamik I Entropie und Energie 

Axiom 1, and 2, and the additional supposition, made by Falk and Jung, 

that thermodynamic systems possess only one empirical entropy (p.136), 

are equivalent to the definition of adiabatic isolations as simple 

preorder relations on the set of systems ~(axiom 1.6 in our 

approach). The metrization axioms for entropy are, according to Falk 

and Jung, contained in Axiom 3a, b, and the additional assumption 

that the empirical entropies of the systems Ji are continuous 

variables. The latter assumption is equivalent to one of the 

properties of the entropymeter in our approach, namely (ifJ, +) ~ (R', <). 

We may suspect that Axiom 3a, b and the last assumption are too strong 

for their purpose. Indeed, Axiom 3b cannot be reconciled with bounded 

additive entropy functions and the criticism formulated above applies 

again. A comparison between our metrization axioms for entropy and 

those of Palk and Jung, makes it apparent that axiom 3c is equivalent 

to the part of our axiom 2.9. i 

z.) (z .... 
J 1 

z.+z.'""z. 
J 1 J 

iff z, ... + z ....... ) 
1 1 



tl other part ••• z.' z. ++ z.~' z. iff z.' ++ z. ''belongs 
1 J l. J 1 1 

to those mctrization axioms which are already itirt>lied in Axiom Ja, 

3b and the continuity asnumption with respect to the empirical 

entropy. 

With respect to the other metrization axioms in our approach we again 

find it difficult to discover equivalent counterparts. Presumably 

remarks similar to those we made in the case of the energetic 

isolation hold here also. 

In Axiom 4, which gives a final formulation of the properties of 

energetic isolations, the problem poses itself why part 4c is included. 

Axiom 4a and 4b are isomorphic with 3a and 3b, and because the axioms 

2, 3· and 3b (and the continuity of the empirical entropy) imply, 

according to Falk and Jung, the metrization axioms for entropy, the 

axioms 2, 4a and 4b ar expected to supply the metrization axioms 

of energy, and thus Axiom 4c. The crux is perhaps that an empirical 

energy is not defined and the continuity assumption for empirical 

entropy has no counterpart in the energy case. But it is difficult 

to believe that after 4a and 4b the complete set of properties 4c 

has to be introduced xiomatically. 

Axiom 4b can again be rejected as physically irreconciliaele with 

bounded additiv e e gy functions. 

Axiom 5 can be <'on~d.dercd as nartially superfluous, if extremal 

principle or entrop introduced, as alk and Jung 
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intend to do in Axiom 6. 

II Die thermodynamischen Koordinaten 

It is necessary to summarise the content of this part, because 

the argument is, in many places, ambiguous. It is, for instance, 

unclear whether conditions in implications are considered as sufficient 

or necessary. 

A fair account of the main lines of this chapter is perhaps the fo~:owi::;;: 

The authors start with a proof of the following theorem (not c ::2lic ~ : ly 

stated): 

If (1) x
1 

(1) 

x (2) 
1 

x (1) 
1 

and (2) X. (1) 
J 

x (1) 
nl 

x (2) 
n2 

.......... 
+ x. (2) , 

J 

x (l) 
nl ' 

is a coordinate system of 1i_ and 

is a coordinate system of 1
2 

, 

xn2 <
2> being metric coordinates 

x (l) x (1) 
1 ••• , j-1 , 

x (1) 
j+l , ••• , 

x (2) •••• x. 1(2) 
1 J- , 

(2) (2) 
xj+l ••. , xn2 

is a coordinate system of c~l' 

which consists of the systems _ 

l.2 J, i.e., the system 
r· 

~ 1 ana li in contact 

equilibrium with respect to the contact relation (connecti~:~1) 

'l) '')) associated with the coordinates of the same kind x. ~ and x. ,_ 

and (3) S (X (l) 
1 1 

J J 

vith respect to the variables x1 , all t £ 1, ••• n1 , 1 ••• n2• 



then (a) 

(b) 

iff as1 
a x. (1) 

J 

• 

[s_1, 3.i J then d S • o if 
r. 
J 

d(X. l) + X. 2)) a o and d X. (l) • o, k + j and 
J J -1' 

(2) 
d x R. • o, f. + j. 

A similar theorem is generated by replacing s1, s2 and S by 

u1, u2 and u. 

Axiom 6 states next that: 

for all thermodynamic systems the condition (1) can be fulfilled (a), 

the condition (2) is fulfilled (b) and necessary conditions for 

z1 z2 e: [3. 1 , l.i J are 
r. 

J 

(4) S(z
1 

z
2

) • the maximum of S{Xj {l» under the conditions 

xj {l) + xj <2>, ~ (l) {all k + j), X f. <2> {all f.+ j) constant 

(5) U(z
1 

z
2

) • the minimum of U(Xj (l)) under the conditions 

(6) 

xj (l) + xj <2>, ~ {l) (all k + j), x1 <
2> (all R. + j) constant (b) 

and finally adds (to make the theory consistent) that 

The maximum S(X. (l1 and the minimum ~(X (l)) wi ll be reached at 
J J 

the same Xj (l) values (b) 

(6 ) The la tcr stat~ment is changed in the case of systems whose energies 

ha e ar upper and a looer bound: 

U(X. (1) 
J 

'11 u •• eh d t 

th~ ntaximum S(X. (l)) and the 
J 

a~ X. (l) val s (Erganzung). 
J 

extrema 
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Finally, a thermal sys tem (thermisches system) is defined as 

a system with a coordinate system U, x2 ••• Xn and for this kind 

of system it is proved that: 

ascu, X2, ..• x ) x n -- > 0 

au 
Satz 10 

Satz 11 Also s, x2 ... x is a thermodynamic coordinate n 

system. 

The criticism of this chapter is twofold: 

The proofs of the theorems which are summarised above appear 

not to be sound : the conclusions cannot be proved on the basis 

of the given assumptions. 

The content of axiom 6 bas to be rejected on physical grounds 

insofar as the parts (4), (6) and (6*) are concerned. 

In the case of assumption (4) it will be sufficient to give 

a counter example with a physical system for which aaanption (4) 

clearly does not bold. 

Counter example: 

Consider a rigid container consisting of two compartments separated 

by a movable adiathermal piston. The compartments are filled with 

two q'Clantities of an ideal gas. 



9 •• 

Suppose that in an initial state 

1'(z,> ~:: -p (Z,i) 
zl z2 : 

T C:z,) < I~ { TCZ.2) 

" 
P Cz1) • P(z2) 

T (z1) < T Cz
2

) 

We will use the following notation: u12 Cz1 z2) • u1 Cz1) + u2Cz2) 

s12 (zl z2) c s1(z1) + S2(z2) etc. 

Now we move the piston quasistatically and under adiabatic isolation 

of the cont.ain.er until a state z1' z2' is reached such that 

Au12 • AU1 + AU2 > o 

asl2 • 0 ' ASl • 0 , AS2 • 0 

In the state z
1

' z2 ' 

u1cz1') • u1cz1) + A u1 

Au1 < o, thus T(z1' ) < T(z1) 

because the gas is ideal 

u
2

Cz
2
') • u

2
cz

2
) + A u

2 

AU2 > o , T(z2') > T(z2) 

Then ve es t ablish thermal contact between the two compartments until 
,,11..- ,, ,, • 

_ _ _a state z1 __ : 2 is reached such that !(z,11
) = TCz,) 

V(z1~') • V(z1') 

V(z2 '~) a V(z
2

' ) 
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ul (zl ...... ) • ul (zl ... ) + .6111 ... - u l (zl) • t hus wl ... - - lllJl > 0 

and T(z1"' ... ) • T(z1) because the gas is ideal 

u
2

(z
2 

...... ) • u
2

Cz2 ... ) + f1U2 "' 6U2 ... • - ~l ... • m1 < o 

and T(z
2

) < T(z
2

"' ... ) < T(z
2

"') 

Then: 
6s

1 
... = s

1 
Cz

1 
...... ) - s

1 
(z

1 
"') > m1"' • 

T(z
1

) 

~2 ... : S2(z2 ...... ) - S2(z2 ... ) > 6U2"' • 
T(z

2 
...... ) 

- 6U1 

T(z
1

) 

6U
1 

T(z
2

) 

Finally we establish thermal contact between compartment 2 and the 

environment until a state z1 ...... z2 ...... ... is reached such that 

u2(z
2 

... "'"') • u2 Cz2 ... "') + 6U
2

"' ... • u
2

(z
2

) thus 

6U2"'' • - 6U12 • - 6U1 - 6U2 < o 

Thua T(z
2 

...... "') • T(z
2
} 

f1S2 ... ... : S2(z2"'"'"') - S2(z2"'"') > 
6U ..... 

2 -

U(z2"' ... "') • U(zi) 

T(z "'"'"') 
2 

- 6U1 + -ilU2 

T (z
2

) T(z
2

) 

U(z
1 

"'"') • U(z
1

) 

V(z1"") > V( z
1
) V(z1 "' "') + V(z2 ""'"') • V(z

1
) + V(z

2
) 

Sl2 (zl z2) + -6U1 + 

T(z1) 



or 512<z1'' z2''') - 512<z1 z2) > - AU 1 -
T(z1) 

- 6u1 [ T(!1) 
+ Au2 T(!2J ] 

AU1 

For the initial state, P(z1) • P(z2). 

For small changes dV, dUl - pl d vl, dU2 • P2 d v2' 

thus starting from z1 z
2 

du1 • P d v1 dU2 • -P d V 

dU2 

dUl 
- 1 

Thus for small d V starting from z1 z2 

d s • - du1 (Tc!1> - T~z2>) 

Au2 

T(z2) 

l , and 

This result contradicts the assumption of Falk and Jung that the 

.. 

state z1 z2 is a state of maximal entropy compared with other states 

z1'' z2''' for which U(z1'') • U(z1), U(z2''') • U(z2) and V(z1'' z2''') 

• V(z1 z2). 

The maximum entropy principle can be used only for states z1 z2 which 

are also in thermal equilibrium. This is clearly neglected by Falk 

and Jung. 

If ve reject assumption (4) then assumption (6) becomes unnecessary 

and meaningless. 

I 

I 
I 
I 
\ 

\ 

I 
I 
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Assumption (6*) has also to be rejected : Falk and Jung confuse 

upper and lower bounds for the energy of particular systems 

maxima and minima for compolUld systems [.ii, .3.j J 
. , with conditional 
i 

Finally, this criticism removes the justification of a more general theory 

of thermodynamics with special applications to thermal systems. 
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CH.Al!T~R 8; A CRITIC!SU 01'' R. GIU.S, MATll.ENATICAL FOUl.JDATIONS ------------- - ------------
OF TllERUODYNANICS, Perganon, 1964. 

Starting point of the discussion of Giles' axiomatisation will be his 

formal theory, as explained in Appendix A p.191-214. This formal theory 

is independent of its physical interpretation. I will, however, add some 

remarks on the interpretation of the primitive terms and the axioms of the 

theory, for this will be necessary if we are interested in the question 

whether the formalism is au axiomatisation of traditional thermodynamics. 

lbus also, the foregoing chapters of Giles' work, where interpretations 

and justifications are given, will enter this discussion. Further, I uill 

undertake a comparison with my own approach which is called C P T (axiomati­

aation of Classical Phenomenological Tilermodynamics) and C P T 0 (the 

extension to open systems). 

A r ference to foregoing chapters of this thesis is given by C P T 
followed by the number of the chapter, definition, axiom or theorem. 

11States 11
: a, b, c ••••• 

Giles' axiomatisation is an attelll>t to formulate a theory of the great~st 

possible generality. The starting point is a set:f'of states, which ~ay 
be interpreted as physical states, comprising non equilibrium states. 

The 'rule of interpretation' has a certain vagueness: 

"the state of a system represents its method of preparation ....... ' 
•••• two states •••• need not be distinguished if they are equivalent :n 
respect of any prediction which might be made •••••• , •••• the term state 

can refer only to conditi ons in which the system concerned is isolated. · 

(1.4. p.17). 
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Ille second quotation reminds us that in physics the concept "variable 

of state" is logically prior to "state" . It is however admissible to 

convert the logical order i1an axiomatisation. 

"Processes ·' a, l3, y, ••• 

The general concept 'process', being an ordered pair of states, has no 

physical interpretation. Only certain specified processes, e.g. 

'natural processes', can be interpreted. 

"Addition of states: + "and "Natural processes: +" 

The interpretation is dependent on the axioms, which explain the use of 

the operators. 

a + b 

A rule of interpretation for natural processes is given (1.5. p.24): 

" ••• We write a + b if there exists a state k and a time interval t 

such that a + k evolves (in isolation) in the time t into the state 

9 + k". 

The meaning of 'isolation' becomes clear in the definition of 'component 

of content' (A.3.2) and the enunieration of the quantities which appear 

as component of content, and remain constant in natural processes: the 

energy, the quantities of the chemical elements, the electric charge and 

the magnetic flux (if neutralisation of charge or current is not allowed), 

and volume. The equivalent of "natural process" in traditional 

thermodynamics is ''process realisable under complete isolation and constant 

volume." This implies that the initial states of natural processes are 

either non equilibrium states, or states of systems which contain partitions 

and consequently they are 'possible non equilibrium states'. 

a+b+c+d 

The interpretation is: 'natural process, where a evolves into c and b 

evolves into d'; Giles proceeds: "thus the process (a , c) can drive the 

process (d , b) backwards." (2.3. p.33). 
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One is tempted to interpret the processes (a, c) and (d, b) as physically 

meaningful. But the coimnutativity of a + b (Axiom A.2.l (i)) imi:\lies that 

in this case also b + a+ c+ d, thus (b, c) can drive (d, a) backwards. 

Processes, which are able to drive backwards other processes can easily be 

'impossible processes', e.g. duplets of states of quite different systems. 

A too physical interpretation is thus not allowed. 

The differences between Giles' axiomatisation and C PT do not exclude 

a comparison. The structure <;/, +, +) has similarities with the 

structure (Z., +,=>),where z.' + z," is identified with z.' z.". 
1 1 1 1 1 

The adiabatic accessibility relation=> is however quite different from 

+ in its interpretation. The similarity will be clear if we compare 

the axioms A. 2.1, and A. 2.2 with the axioms in C P T. 

A.2 .1 Axiom. 

(i) Tbe operation + is associative and commutative 

(ii) a+ a 

(iii) 

(iv) 

A.2.2 Axiom 

if a + b and b + c then a + c 

a + b if f a + c + b + c 

If a + b and a + c then b + c or c + b 

C P T Axiom 1.6, Axiom 2.9 

For all Z. E 'J, there exist simple preorder relations=> such that: 
1 i 

(i) 
, 

->. 
,, 

if f 
, 

=> .. 
,, 

z. z. z. z. z. z. 
l. 1 1 l. J 1J 1 J 

1 n 1 n (ii) z. . . . . z. =i> Permutation z. . .... z . 
1 1 1 1 

(iii) if 
, , 

=> 
,, ,, 

then z,, => ,, 
z. . . . z. z, . ... z . z . 

1 1 1 1 1 1 

The only formal difference is that in C P T commutativity is restricted 

to states of the same system, and that C P T 2.9. (iii) has no equivalent. 
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·•comeo ats of co t": Q(x) 

Its physical interpretation as the internal energy, the deformation 

coordinates, and the elementary quantities has been given. 

Paragraph A.3 will demonstrate the existence of a positive component 

of content Q(x) defined on all x c'J', and will prove that if (a, b) 

is not possible, then there exists a positive component of content, 

such that Q(a) ~ Q(b). The proof applies the extension theorem 

(B.3.1. p.219). An additive function Q' (t o + y) a t A(o) 
defined on a subgroup ~ of processes t o + y, where t is an 

integer, and y is an arbitrary possible process, can be extended 

to an additive function Q'', defined on all processes, because 

A(o) is so defined that Q' (t o + y) ~ A (t o + y) and A(a) is 

finite linear on the group of all processes~, and further~ 
contains an internal point £ with respect to A· Next 

Q(x) = Q'' (x, 2x) can be proved to be a positive component of 

content, and Q{a) ~ Q(b) if (a, b) is not possible. 

The definition of the function A requires the introduction of an 

inclusion relation C, through: 

A. 3. 3 a C b iff there exists a positive integer n and a state c, 

such that (n a + b, n b) is a possible process. 

The exis tence of A requires an axiom: 

A.3.6 Axiom. There exists an internal state 

A.3.5 Definition. A state e is internal if, given any state x, 

there exists a positive integer n such that x c: n e. 

The physical interpretation of the concept of an internal state 

causes some hesitation: it must be a state of a system containing 

an amount of all possible components of content: i.e. all chemical 

elen"lents, vol , electric charge, magnetic flux, internal energy. 

The assu:nption of the exi&tenc~ of uch a state might be avoided, 

and 1 t i d of exis -.!llCe i ~~ant? 
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Another critici1m of the procedure outlined above, links up with a remark 

of Duistermaat ((6) p .21): "Let PC be a subset of a commutative 

group (G, +) and let 1lc be the sub-semigroup of (G, +) generated by 

fland O. Then the largest subgroup of (G, +) on which additive 

extensions of additive functions on PI/. are uniquely determined is the 

group Gfl of all a E G with na • b-c for some natural number n and . some 

b, c E Pll,. Because of the arbitrariness of extensions of real measures 

of ~-processes to elements which do not belong to GrJl • • • it would be 

reasonable to extend measures of Q1? processes only to G'1! and not to 

the whole group G. 11 This implies that the largest subgroup of 9 
on which an additive extension Q.,... of additive functions Q"' on~ is 

uniquely determined is the group {a: n a a t o + y}. If a state a 

is chosen as unit of content: Q(a) • Q"'"'(a, 2a) • Q"'"'(o) • 1, then 

Q(x) • Q"'"'(x, 2x) is determined only if n{x, 2x) • t (a, 2a) + 

(p,q) where (p,q) is possible, or n x = t a + p and 2 n x • 2 t a + q. 

If we represent x, a, p and q by vectors in content space 

Q(x), Q(a), Q(p) and Q(q), then, because Q(p) • Q(q), it follows - ~ ~ - - -
n Q(x) • t(Q)(a) which implies that x and a differ only in a factor t/n ... ... 
in all components of content, thus x and a are 'similar states ' in the 

terminology of C P T O. The domain of definition is thus indeed utterl':,r 

restricted, and the mathematical arg\.Ullent does not lead to a procedure 

which enables us to measure components of content, and the components 

of content defined through Q(x) a Q"'"'(x, 2x) do not seem physically 

relevant. 

The proof that Q(a) ; Q(b) if (a,b) is not possible necessitates the 

introduction of another axiom: 

A.4.3 Axicm. Given a process a, if there exists a state c such that for 

any positive real number E there exist positive integers 

m, n and states x, y such that m/n < E, x c:m c, y c:m c, 

and (x,y) + n a + o then a + o. 
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'nle direct physical interpretation of the axiom is thwarted by the 

interpretation of ~and the expression (x,y) + n a + o in case 

(x,y) and a are impossible processes. But something can be said 

in view of certain implications of the axiom. 

Firstly ; the.Archimedean axiom is implied: 

A.4.4 Theorem. Given states a, b if there exist states x,y such 

that the relation n a + x + n b + y holds for 

arbitrarily large integers n then a~ b. 

This axiom enables us to include in the natural (or possible) processes 

those which are not natural (or possible) in themselves but can be 

'driven' with the assistance of 'infinitesimal' processes. In 

C PT the interpretation of 'possible process' is so wide that 

these processes are included already. 

Another implication of A.4.3 is, that for states a, b of the same 

'content' the entropy aifference 6 S(a,b) is finite (Gee A.4 .5). 

Within the framework of C P T this leads to the interesting conclusion 

that the entropy S has a lower bound (an axiom in C P T, whi ch is part 

of the third law: C PT 6.4). Consider the S(U)X curve of a thermodynamic 
k 

system which obeys the maximum entropy principle, and continuity assumptions, 

and whose internal energy function has a lower bound (see figure 8.1). 

The points A, B, C on the curve represent equilibrium states a, b, c; the 

points A', A'', ••• represent non-equilibrium states a~, a~~, .•• with the 

same content as a, and consisting of states 'similar' to b,c (see C P T 0 
A~ A~ (2) p ), so that a'• BC b + B'(;" c. A necessary cndition for 

finiteness of 6 S(a, a') at constant content is finiteness of the 

distance A A', and this implies in case of a lower bound of U, a lower 

bound for s. 



g~aai-Entron: s (~ · 

The concept of 'quasi-entropy' replaces the role of the concept 

of 'entropy' in a theory that gives 'natural processes' a more 

fundamental meaning than 'adiabatic processes'. In such a theory 

the connection with traditional thermodynamics will be established 

through additional .assumptions concerning the 'quasi-entropy' of 

'mechanical states' or the 'quasi-entropy difference' of 'mechanical 

processes'. The formal similarities of the quasi-entropy as 

defined in A.4.1 and the set of extensive entropy functions s. 
1. 

as defined in C P T 2.1 will be clear after inspection. 

A.4.1 Definition. A real valued function S(a) defined for every 

state a is a quasi-entropy function if; 

(i) S{a + b) • S(a) + S{b) 

(ii) 

(iii) 

C.P.T. 2.1 Definition. 

if a + b & b + a then S{a) a S{b) 

if a + b & b f a then S(a) < S{b) 

A set of extensive entropy functions s. for 
l. 

the systems Zi E ~is a set of real valued 

functions S.{z.), z, E Z., such that 
1 1 1. 1. 

{i) S.{z.-) < S.{z.'') iff z.~ :;:i> z.'' 
1 1 ' l. 1. 1 1 

if z • z. x z. x •••• then S(z) •S(z. z .••• ) • 
1 J 1. J 

S. {z .) + S. (z.) + •••••• 
1. 1 J J 

{ii) 

The proof of the existence of a positive quasi entropy function S(a) 

for all states a E ;/'is similar to the existence proof of a positive 

component of content and similar critic sm applies. Again a 

special function, V(a), ii introduced. It is not profitable 

to consider its physical interpretation. With the help of this 

function a function la) is defined on the set of possible processes 
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9. and this function can be extended to a function I, defined for all 
p 

processes. Finally, a function S(a) : I' (a, 2a) is defined for all 

states and it is demonstrated that S(a) is a positive quasi entropy 

function. The function I may be formally extended to all processes, 

it is, however, uniquely defined for the set of processes 

{a : n a • m f3}, where f3 is a possible process (a £ ~). Yn C P T 

the introduction of functions, whose meaning seems to be exclusively 

mathematical , is avoided. An attempt to define internal energy 

functions and entropy functions on the domain of all states is not 

undertaken, because it seems unprofitable. 

Boundedness 

A.6.3 Definition. A real valued additive function Q(a) defined for 

every state a is bounded if there exists a constant 

k such that, for all a, I Q(a)I ~ k 11 al I • 

Cl I af I • inf { m/n : na C me} , where e is the unit 

state (A. 6 .1)) 

The physical interpretation leads to difficulties owing to the use 

of the concepts 'internal state e' and 'inclusion C'. The 

justification of its introduction as given on p.63 is not convincing: , 

" ••• a component of content Q is physically acceptable if and only if 

it is bounded •••• If Q is not bounded then we can find states x with 

11 x 11 arbitrarily small but with I Q(x)I > 1, say. But then, for any 

state a, the states a and a + x differ arbitrarily little in content, 

and yet!QCa + x) - Q(a)I > 1. On the other hand, if Q is bounded 

this cannot happen ••••• " The following example demonstrates that 

boundedness is not necessary to avoid the situation described. 

Suppose the graphic representation of the function !Ix!!+ IQCx)I is 

as in figure 8.2, with ll!jj + 
0

IQCx>J/flxll • ~: this function 

is not bounded, but remains physically acceptable . 
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! 'the requirement of 'boundedilesa' • ~ to be introduced to guarantee 

continuity of thermodynamic functions. Its counterpart in C P T might 

be ·the 'continuity assumptiona of chapter 4. 

Equilibrium states 

ILJ -At7.l Definition. A state a is an equilibrium state if there exists 

• • no state b such that a + b and b + a. 

The definition implies that state a is a state of maximum entropy, 

compared with all other states with the same 'content'. This clarifies 

the relation of Giles' a.xiomatization and Gibbsian thermodynamics, 

and consequently with C P T, where 'equilibrium state' is a primitive 

, ~ concept and the axiom .can be stated that equilibrium states are states 

".1 of maximum entropy. Because in C P T a more specified concept of 

equilibrium is given through the distinction of different 'connections', 

~tt the maximum entropy principle can be stated also in a more specified 

((J ' form (see C PT 5.1) • 

• A.7.2 Definition. A state is a perfect equilibrium state if na is 

an equilibrium state for every positive integer n. 
:~n.:. 

Gile relat s this concept in its physical interpretation with equilibrium 
l.J. d 

rl 
states of simple (homogeneous) fluids. The associated concept in C P T O 

is 'equilibrium state of a homogeneous system'. In C PT 0 'homogeneity' 
\' ,'11:.;, • 

firstly defined and next the theorem is proved: for all 'similar 
I 

z1, and zj: S . (z.) U. (z.) V. (z.) 
1 1 • 1 1 • 1 1 -

s.(z.) u.(Z.) v.(z.) 
J J J J J J J r 

M. 
1 

M. 
J 

((2) p. ) 

Th converse of ·this theorem is : for homogeneous s'.)ltems states a and 

• i r a are 'aimi'lar', and consequently if a is an equilibrium state, 

c1 then r a is also. 
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Potential 

A.8.1. Definition. A potential f is an additive function on content 

space 1 such- that - f CJCx)) ~ S (x) for every state x. 

A.8.2. Definition. We say state a has the potential f if 

S(a) • - ~ CgCa)). 
.... 

-
It is not allowed to interpret a potential as a vector consisting of 

absolute temperature and Massieu functions. This interpretation would 

pre-suppose differentiability of the function sCgCx)). Giles explains 

what can be derived without the assumption of continuity, and he realises 

that more explicit results can be obtained if such assumptions are used. 

The final result of paragraph A.8 is: 

A.8.5. Theorem. If c a a + b is a perfect equilibrium state having 

the potential :f then a and b are themselves perfect 

equilibrium states having the potential.f• and conver~ely. -
In C P T assumptions of differentiability are indeed introduced and these 

lead to the existence of absolute temperature and Massieu functions and 

to the theorems C PT 5, 11-17. 

zi zj E Ca 

zi zj E ea 

iff T(z.) 
1. 

and 

• T(z.) 
J 

which, together with the transitivity of the connection relations may 

be considered as specifications of the above theorem A.8.5. 

Absolute entropy 

The last paragraph of Giles'axiomatization introduces the concept 

'anti-equilibrium state' and assumes the existence of _an anti-equilibrium 

state for every state x, with the intention to obtain~his way states of 

reference for an absolute entropy function: 



l OS. 

A 9.1. Definition. A state x is an anti-equilibrium state if there 

exists no state a such that a + x and x + a 

A 9. 4. Axiom. 

(1) If a is any state then there exists an anti-equilibrium 

state such that x + a 

(2) If x and y are anti-equilibrium states then so is x + y 

A 9.3 Definition. A function of state S is an absolute entropy 

function if: 

(1) S is a quasi-entropy function 

(2) S(x) • o for every anti-equilibrium state x 

The axiom A 9.4 is physically very dubious. It could be argued that 

the contrary is physically more realistic: such an axiom would express 

that states of zero entropy and zero absolute temperature do not exist; 

the points in phase space, which represent such states, form the 

cloaure of the~ set of 'occupied' points. 

Giles' approach is essentially different from that of C PT . In C P T 

no attempt is made to define an absolute entropy function on the set of 

all s tates . For certain subsets of states (formal systems) a greatest 

lover bound for the entropy is assumed and it is recognised as part of 

the 'third law' of traditional thermodynamics. 

Apart from a 'quasi-entropy' and an 'absolute entropy', Giles introduces 

an 'entropy function': 

A 9.12. Definition. A function of state S is an entropy function if 
0 

(i) 5 is a quasi-entropy function, and 
0 

(ii) 5 (m) • o for every mechanical state m. 
0 

The mechanical s tates form an arbitrary subset of the anti-equilibrium 

states~ A rule of interpretation i• not given and Giles is aware of 

the difficulties involved. Duisterm.aat has rightly remarked that it 



106. 

will be physically more acceptable if we omit 'mechanical states' and 

restrict ourselves to the introduction of 'mechanical processes'((6) p.51): 

this also avoids the problem of the connection between 'mechanical states' 

and'anti- equilibrium states'. 

Construction of an energy function 

Considering the failure of the theory, as described above, to construct 

component of content functions which are uniquely defined on physically 

interesting subsets of ~ it is desirable to discuss the construction 

of an energy function which Giles offers in paragraph 11.3. 

The procedure is as follows: 

(1) Select two arbitr~ry states A
0 

and A1 of a system A, and define 

E(A
0

) • o, E(A1) • l 

(2) Prepare a row of systems in state A
0 

and a row in state A1• 

To determine the energy value of a state A
2

, which is intermediate 

in hotness between A
0 

and A1, weak thermal contact between A
0 

and A1 
is established, till one of the systems reaches the state A2• As 

soon as that happens thia system is replaced by a second system of 

the same row, etc. 

After m + n steps : m A1 + n A
0 

+ (m + n - 1) A2 + A3 

Then, according to Giles, also A3 is intermediate in hotness between A
0 

and A1; thus A2 c: A
0 

+ A
1

, and A
3 

t:: A
0 

+ A
1

; consequently 

I IA21 I ~ I IA0 + A1 11, and I IA3 I I ~ I IA
0 

+ A1 11; thus 

[ m : n E(Al) + m : n • lim 
m + n + co 

This procedure is only applicable to one dimensional systems (or two­

dimensionality of the 'completion'), which means t://O systems with 

internal energy as completely determining variable of state. It is 

however not clear which criterion leads to the selection of the subsets 

of states forming these systems, from the set Y of all states. It 

pre-supposes a more specified theory than the general theory of c&: +, ~). 
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J ~th ~e tk...::< ~~~·. •i :2!llt~op1 ~~ n~:p& r equivalent •tatement) ia 
p~~•upposed, and prGs bly lao differentiability of S(E) . Fi nally, 

boundedness of E ia presumed, which property seems not clear physically. 

Thia cri ticism will lead to an al ternative approach in C PT, which 

presumes a division of '"ff in subsets z1, or 'systems', and a selection of 

systems with special properties : energy meters (see C PT 3.15,16). 

Construction of an entropy function 

This chapter will close with a few remarks about Giles' construction of 

an entropy function in paragraph 11.4. 

reproduced as follows: 

This construction might be 

(1) Select two arbitrary states A
0 

and A1 of a system A, and define 

S(A
0

) • o and S(A1) • 1. 

(2) An auxiliary system K and a mechanical system M are necessary 

to determine the entropy of an arbitrary state A2 of the system A. 

A series of quasistatic adiabatic processes of systems A + K, 

and quas i static natural processes of K + M is performed, such that 

the result is: 

m A
0 

+ n A1 + K
0 

+ ~ . <-'> (n + m) A2 + K1 + M2, and 

next the natural irreversible process K1 + M2 + K
0 

+ M3• 

It foll ows that m A
0 

+ n A1 + ~ + (n + m) A2 + M3, where (M1, 

i a a ' mechanical process'. Thus S(A2)~ m S(A
0

) + n 
m+n m+n 

and because only the last step is irreversible natural: 

- lim 
m + n + c:o 

S(A ) 
0 

+ n 
m+n 

S(Ai) ) 

The procedure is again only applicable for one-dimensional systems. 

I t assumes the concept of a quasis tatic adiabatic process, which falls 

out s ide the framework of t he general theory of (S, +, +). Giles 

argoes that t he necessity of quasistatic performance of the processes is 

superfluous: ' •••• ve may not be prepared that 0 (i.e. a 'primitiva 

observer') can recognise equality of bot ess. HoueverD in princi ple 

this is not nec&a~ary. For if 0 c rrie o~c the eX})eriment (for a given 

I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
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value of N • n + m) a large number of ' times, making the said adjustment 

a t random, it will occasionally happen by chance that their accuracy 

is good; since the experiment determines a bound to the unknown quantity, 

rather than an estimate of it, one good trial supersedes any number of 

bad ones'. This argument is invalid, because in that case each of the 

N process steps of A + K + M adds to the irreversibility and if N + co, 

then the probabil ity p to obtain a good total accuracy approaches zero. 

In C PT there is a possibility to choose 'one dimensional systems'. 

Al10 the concept of a 'quasi-static adiabatic process' is available. 

The construction of an entropy function in C P T (2. 16, 17) is, in some 

respects, similar to Giles' construction, in other respects it is 

different: e.g. following Cooper (5) another limiting procedure is 

used. 
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C'1.i!l>TER S= A C~ l':l"l~ OF J. J ... DUl!.STE 111.AT • ENERGY AND EllTROPY 

AS REAL MORPHISMS FOR ADDITION AND ORDER, Synthese 18, 311 (1968). 

Duistermaat's article will be discussed in so far as thermodynamics is 

considered. Therefore, I will start from part III: 

Thermodynamics. The given axiomatisation will be considered with respect 

to its consistency, and with respect to its physical interpretation. 

Also, a comparison will be made with C P T. 

3 .1.1. Axiom: {S, +, vf1 is a preordered conunutati ve semi group. 

(S, +,~has to be interpreted as {';/', +, ~) in Giles' axiomatisation. 

The same criticism applies. The axiom expresses that {S, +,t./f) satisfies 

the conditions: 

1.2.6 {ii) {a+ x, b + x) E(l'f"'iff (a, b) 
1

E J((' 

1.2.6 {iii) vfis a preorder in S (i.e. reflexivity and transitivity 

applies). 

This axiom is thus equivalent with Giles' axiom A.2.1., which is already 

compared with C P T. { see chapter 8 ) 

3. 1.2. Axiom: There exist irreversible~-processes. as 

The concept of an~-process is explained in 1.3.S. With the coumutative as 
semigroup of states {S, +) is associated the commutative group of processes 

(S x S, +),where addition is defined by (a, b) + (c, d) • (a+ c, b + d). 

S x S falls ipart in equivalence classes [A-, b] through the equivalence 

relation~, defined as follows c1.1. p.10): 

(a, b) ~{a', b~) iff (3 x, x~) (x, x~ £ S & (a+ x, b + x) • (a~+ x', b' + x')). 

The introduction of the group S x S, and the equivalence relation ~ seems to be 

performed because of its mathematical usefulness, it can be doubted whether a 

physically meaningful interpretation for~ is possible (see C PT chapter 8). 



Let us. for clarity, indicate states by roman letters a, b, ••• and 

formal processes by greek letters a, 8, Interest is restricted 

to certain subgroups of the group of formal processes~ • S x S, 

namely to the natural processes,rf~the mechanical processes c-'tf the 

adiabatic processes cJI.. An attempt to formulate a general theory for 

the group of all formal processes ~ seems to me unprofitable, as 

already explained in chapter 8. Entropy difference functions and 

energy difference functions can only be sufficiently defined on 

subgroups off· 
In the group <f • +) a preorder ~ is 

processes: a< B iff B - a£ ;f~f 

/ 

generated by a subgroup 4--"of natural 

' 
a• (a, b) then - a= (b, a)). 

a~ B can be interpreted as 'the process B can drive the process a 

backwards'. This has the usual meaning, if a and Bare possible 

processes. This restriction is, however, not made by Duistermaat 

and the criticism of chapter 8 can be repeated. 

The subgroup41'is extended to a subgroup;{/", which is introduced to as 
comprise those processes which are not natural in the strict sense 

(i.e. spontaneous under complete isolation) but which can be performed 

with the help of an 'arbitrarily small' spontaneous process. 

The author explains that, if the existence of a 'dominating process' 

is assumed (i.e. a process a such that for all ~ ~ o, which implies 

~£~ere exists a natural number n such that~< n a), F, ~ 
n as 

iff (t(r) (3n, k) ( /k < r & k (~ - y) ~ n a), where r is 

a positive real number, and n and k are natural numbers. The 

assumption of a 'dominating process' is closely related to the 

assumption in C P T that all adiabatic processes are measurable by 

y, 

a unit process of an entropy meter and similar assumptions for processes 

under energetic isolation (see C PT 2.21-22, 3.18-20). The extension 

of~,({; has a function which is parallel with the introduction of 

the Axiom A.4.3. in Giles' axiomatisation and, as is already mentioned 

in chapter 8, the problems solved on the formal level through it by Giles 

and Duistermaat are solved on the level of physical interpre tation of => 

and ~ u) in C PT, where reversible accessible processes include 



processes which are not spontaneous but 'quasietatic ' accessible 

under the given isolation. This corresponds with an approach in 

which ~ and ~ are assumed to be identical, i.e. the preordered 

commutative g:up '9• +, ~) is 11"rchimedean11 (see (6) 1.3.8). 

The axiom 3.1.2.: ''there exist irreversiblevf:': -processes" is as 
associated with: 11 there exist states z "', z ""' of a meter Z such 

0 0 0 

that z " + z "'""which is implied in C P T 2.17. 
0 0 

Tbe axioms 3.1.l and 3.1.2 imply, according to Duistermaat, the 

existence of non-zero measures of natural processes. This is 

presumably to be considered as an application of the corollary 

of theorem 1.4.1. 

1.4.l. Theorem (a, b) E (j( iff f(a) ~ f(b) for each (S, +,II.> as -
morphism f. 

Corollary: There exists a non trivial real (S, +,II,) morphism iff 

there exists an irreversible~ -process. as 

But it can be doubted that the corollary follows from the theorem. 

A po1sible proof might be attempted in this way: 

(a, b) £11..
8 

& (b, a) t ~s iff f(a) ~ f(b) and not 

f(b) ~ f(a) for each real (S, +~) morphism £; this does not imply 

C3 f) (f(b) > f(a)) because the set of real (S, +,d{.) morphisms 

might be empty! 

A complete treatment of the necessary and sufficient conditions for 

the existence of measures of ~-processes is given in the general as 
theorem 1.3.4: 

1.3.4. Tbeorem. A real additive function 

a preordered commutative 

ea~ended to a real (G, +, 

f on a subgroup G of 
0 0 

group (G, +, ~) can be 

~)-morphism if and only if 

£
0 

is dominated by some real function f 
0 

on some 

dominating subset A of G~ 

111. 
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The foregoing conditions are fulfilled for ~· +,(/")if for the set 

G is chosen the set of processes {n y : n • integer, Y •unit process}, 
0 

f (n y) • n f (y) • n, and a dominating function v(a) is defined as in 

Giles' axiomatisation ((4) A.4.6). This approach has already been 

criticised in chapter 8. A simplification of this oan be obtained if 

we choose for G the subgroup of possible processes~P' for G
0 

again 

the set {n y} and f (n y) • n, and y is considered as a dominating 

element. This is in fact the approach of C P T. It has not the 

generality of Giles' or Duistermaats' approach, but the latter 

recognises that e.Jtension of measures of VV--processes to the whole 

group g is not profitable (see 1.3.8). 

The uniqueness of existing (G, +, ~) morphisms on a subset G' c:G 

requires an extra condition (i~4.2): G; is linearly ordered with 

respect to ~ • This condition can be introduced as an axiom which, 
as 

applied to (~ +,vf), runs as follows: 

3.1.3. Axiom. If (x, y) e: r and (x, z) e:/ then (y, z) e:~ or as as as 

(z, y) E~ as 

This axiom is closely related with Giles' axiom A.2.2. and with the 

assumed comparability and transitivity of the relation=> in C P T. 

Dlistermaat prefers however to derive 3.1.3 from the definition of an 

entropy function and two axioms, introducting the set of mechanical 

processescl{,as a new primitive term. 

3.2.1. Axiom: (i) v/(is an equivalence relation in S 

(ii) Catalysed sums of zero and c.Kprocesses are c./(processes 

(i.e. (a+ x, b + x) e.c/(,iff (a, b) e:c/(ando(fis a 

preorder in S). 



J . 2.2 Defiui ticn: S is an entropy function on (S, +,~~ iff: 

(i) s is a real additive function on (S, +) 

(ii) if (a, b) E~then S(a) ~ S(b) 

(iii) if (a, b) £"(then S(a) • S(b) 

3.2.4 Axiom: Each mechanical process which is a difference of two 

natural processes is a reversible asymptotically natural 

process. 

The derivation of 3.1.3 can be reproduced as follows_ 

J.2.4. ,iff each measure of~rocesses can be extended to an entropy 

increase function 6 S on ~>iff measures of~rocesses are uniquely 

determined up to a gauge factor,iff 3. 2.1. 

The second step assumes that A S on~ is uniquely determined up to a gauge 

factor. But it is not perfectly clear which presuppositions are 

involved in the proof of this statement as undertaken in 3.5. It might be 

preferable to take 3.1.3 above 3.2.4 as an axiom. 

The discussion of the relationships between Duistermaat's axiomatisation 

and traditional thermodynamics is hindered by the lack of clear rules 

of interpretation for the primitives: the remark! 11 thermal isolation" 

ee6ms to be an essential part of the physical interpretation of mechanical 

processes' (3.2. p.50) is insufficient. An attempt to give a rule of 

interpretation forcl{other than 'quasistatic adiabatic processes' leads 

into difficulties. It seems that the introduction ofe4'(with the 

properties of axioms 3.2.l and 3.2.4 begs the question of the relationships 

between the physical content and formal structure of thermodynamics. 

Energy. The First Law of Thermodynamics 

The introduction of an internal energy function takes place in a manner 

essentially different from Giles' approach and can be summarised as 

follows: 
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Primitive terms are introduced: the set of purely mechanical natural 

processes:~ h' the set of all states of S which are 'at rest': S , mec o 
the setcf pairs of states which only differ with respect to their 

properties of motion: '-"· 

Next an energy function is defined: 

2.2.2. Definition. E is an energy function on the mechanical 

system (S, +, v(/"_ h' S , ,,.,//) iff; mec o "7(0 
(a) E is a real additive function on (S, +) 

(8) If (a, b) e:~ch then E(a) .. E(b) 

(y) If (a, b) e:q(o and b e: S
0 

then E(a) ~ E(b) 

A passive process a e: gJis defined as a catalysed sum of~ h' stopping mec 
and zero processes, stopping processes being processes a, b e: c{(o such 

that b e: S • Consequently E is an energy function if f - E is a real 
0 

(S, +, fP>- morphism. 

Next a procedure for the experimental determination of E differences 

is explained (2.2.3). This procedure restricts itself to the 

measurement of energy changes op passive processes (which may be 

interpreted as processes in which the kinetic energy decreases, and 

no other energy changes occur). Then it is assumed (3.3 p.55) that 

the energy increase function 6 E is uniquely determined oncf('up to a 

gauge factor: this means that the domain of unique definition of the 

6 E function is extended to processes for which, until now, ~ E could 

not be measured experimentally. A procedure for measurement in 

this domain is not given. 

The last step is the definition of a thermodynamic energy function as 

an extension of an energy function from~ch to~(3.3.l) which is 

made possible without inconsistencies by axiom 3.3.2. 
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3.3.1. Defiuit~on: E io called a thermodynamic energy function with 

respect to the mechanical energy increase function ~ E on 

iff: 

(i) E is a real additive function on (S, +) 

(ii) If (a, b) £ 4'then E(a) • E(b) 

(iii) !f (a, b) £ a/(then E(b) - E(a) • /1 E( [a,b]). 

3.3.2. Axiom: If a is a mechanical process which is a difference 

of two natural processes, then 6 E(a) • o for each mechanical 

increase function ~ E on~ 

Duistennaat considers this axiom as "the first law of thermodynamics". 

This seems incomplete: the assumed possibility to extend the mechaniC4]. 

energy increase function 6 E to mechanical processes is an equally 

important part of the first law, within the framework of this theory. 

One parameter Contact Experiments. Heat. The Second Law of Thermodynamics 

In this and the following paragraphs, the axiomatisation restricts itself 

to 'narcistic systems, parametrised by a component of content E'. 

Definition: A subsystem T of S is called parametrised by E if 

a, b E T, E(a) • E(b) implies that (a, b) e: .//' .... .-Vas 

Definition: T cS is called narcistic if for each a, b £ T there 

exists a state c e: T with (a + b, c + c) E £. as 

The only systems of traditional thermodynamics which obey the condition 

'parametrized by E' non trivially, are systems which are completely 

determined by the value of the internal energy. These are systems 

without variable deformation coordinates or systems with deformation 

coordinates whose values are completely defined by the internal energy, 

e .g. a gas with variable volume but with constant temperature or constant 

entropy. This is a severe restriction on the generality of the theory, 

and it might be considered as inacceptable. For narcistic systems, 

parametrized by E, it ·s proved that S(E) is dyadically concave , but 
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not necessarily continuoua. Duistermaat assumes in subsequent sections 

that S(E) is continuous but not necessarily differentiable. 

A concept of equilibrium is defined (p.60): 

' ••• T1 and T2 are in equilibrium at a1 £ T1, a2 £ T2, iff for 

each£> o there are a1"' £ T1 , a
2
'£ T2 with E(a1) + £ > E(a1 .. ) 

> E(a1) such that Ca1' + a2', a1 + a2) £~,and there are 

a
1

"'"' £ T
1

, a2"', £ T
2 

with E(a1) > E(a1 .... ) > E(a1) - E such that 

<•1 ./ltl + 4 2 tltl t 8 1 + a2) £ ~•I 

This can be expressed as: S Ca1 + a2) is maximal compared with 

S(a1~ + a2 .. ), where a1', a2' are neighbouring states, such that 

E(a1" + a2"') • E(a1 + a2). This is clearly the maximum entropy 

principle, restricted to systems 'parametrized by E'. Narcistic systems 

~an be interpreted as systems whose E space is 'dyadically occupied' 

and for which the maximum entropy principle holds good. 

In C P T primitive terms 'thermal connection' or 'in thermal 

equilibrium', and 'kth force connection', or 'in kth force equilibrium' 

make it possible to replace the above definition of 'equilibrium' by 

a similar but more specified statement which has the status of an 

axiom. This specification, and the extension of the principle to 

'simple systems' which are systems with multi dimensional phase space 

[u, .•. ~' .• .J, are essential for the further development of a general 

theory of thermodynamics. 

The subsequent theorem (J.4.4) reads: For subsystems T1, T2 of s, such 

that T1 and T2 areparametrized by E, and S(E) is differentiable: 

as(al) asca2) 

a E a E 

This theorem is similar with C P T 5.10: under certain conditions .... 

iff [ 
as. (z.) 

]Xu [ as.(z.) ] zj £ ce 1 1 J J z. -1 a u. § u. 
XR.j 1 J 
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Nsxt a nev pr· ·c· term. ii introduced by Duis temaat ~ 

' thermal ayatem' . The restriction of an energy function to a thermal 

system T is called a 'heat function' on T. Therma! systems could be 

interpreted as systems Yith constant deformation coordinates, but the 

interpretation ia not really attempted. 

The second law is then announced in the following form: 

Axiom: Let E be a thermodynamic energy function as in 3.4.5. 

Then [a, a'] is an irreversible adiabatic process if 

a, a~ belong to the same themal system T £ 0 and if 

E(a) < E(a"') 

Criticism of this axiom is possible in so far as it does not allow 

for negative absolute temperatures. The axiom holds only for 

'dermal systems' with positive absolute temperature, and if we 

restrict ourselves to the latter class of systems then the axiom 

i a an implication of the concave upwardness of the S(E) curve, 

and is consequently no axiom at all. It cannot be expected that 

a 'second law' would still be necessary after the foregoing. 

The measurement of entropy differences as explained in 3.5. is done 

with the help of Carnot C}'Cles. It presupposes at least the existence 

of such cycles adapted to arbitrary processes. According to Duistermaat 

all known measurements of entropy seem to be of this kind. This can 

ha doubted . Alternative procedures are given by Giles (4) and 

Cooper (5), and followed in C PT. 



CHAPTER 10: A CRITICISM OF J. L. B. COOPER, TilE FOUNDATIONS 

OF THERMODYNAMICS. JOURNAL OF MATHEMATICAL ANALYSIS 

AND APPLI CATIONS 171 172-193 (1967). 

The article cons i s ts of an introductory part with a cr i tique of 

classical theories and a systematic development of an axianatic 

system for thermodynamics. 

The critique of classical theories is certainly the weakest part 

of the article but fortunately this does not affect the main 

purpoae : the development of an axiomatisation. I will start 
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with a discussion of the shortcomings of paragraph 2 of the article. 

Quotations will be placed between asterisks . 

2. Critique of Classical Theories; 

* L.l 
L.2 

L.3 

Clausius' Law .... 
Kelvin's Law •••• 

Caratheodory's Law : In any neighbourhood of any state s of 

an isolated thermodynamic system there exist states which 

caunot be reached from s by any possible processes. • 

Cooper's formulation of Caratheodory's Law is identical with the original 

formulation if 'possible processes of an isolated system' may be 

identified with 'adiabatically possible processes.' 

(a) There exists a real valued empirical temperature function (s), 

which is an equivalence relation. 

*(b) The work done in a small quasistati c adiabatic change of a thermodynamic 

system is given by a differenti al form d Q· * 
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1'h• apeci~i tion que ieta i in (b • wh_~h i a also preeeut in 

Caratheodory'• article, seems unn cessary, and is presumably a mistake 

the latter article. The notation d Q for 'work done' and d W for 

'heat transferred' is disturbingly unfortunate. The concept of 

'heat' is not defined in Cooper's account. The Caratheodory appro eh 

attempts a mechanical definition of heat on the basis of the first law. 

A form of the first law deserves to be mentioned under the important 

assumptions, (a), (b), leading to the entropy law: 

*L.4 The Entropy Law. There is a universal function of empirical 

temperature T(T), which is itself an empirical temperature 

and a function of state f such that d W • T d f . • 
*A. Either L.l or L.2 implies t.3. * 
The proof that both the Clausius Law and the Kelvin Law imply Caratheodory'a 

Law leads to the conclusion that given any state, of a compound system, 

there exist states arbitrarily near it which are inaccessible, under 

complete isolation, because of Clausius' Law or Kelvin's Law. This 

does not imply Caratheodory's Law, which considers adiabatically possible 

processes of a bigger class of systems which contains in particular also 

aimple aystems. 

*B. L.3 implies that there is a universal function g(T) of empirical 

temperature such that d W • g(T) df for some function 'f· * 

* L.l implies L.4 

L.2 does not imply L.4 : L.2 is equivalent to L.3 with the addition 

of the assumption that the work done in any isothermal change 

is non zero. * 
It seems that in the proof of these theorems the concepts of 'heat' and 

'work' are mixed up. For a Carnot cycle between temperatures T
1 

and 

T2, t 2 < T1 i s tated: * I t fol l ows f r om B that if the change of entropy 

. ~ . , . 
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at Tl ii llf and at T2 is - llf then the quantities of work (sic:) 

done at these temperatures are g(T1) 6~ and - g(T2) /j.f', respectively,* 

If the use of the term 'work' in this context is not a mistake, then 

the 'cycling' system must be an ideal gas (along an isotherm: d Q • -d W) 

and thus the existence of ideal gases are presupposed, which is denied in 

the sequel of the argument. The proof continues: *Clausius' Law 

asserts that these cannot be equal: otherwise the cycle would result 

only in a transfer of heat; * This assumes that the work done along 

the two adiabatic curve pieces of the cycle cancel each other, which 

is, in general, not true. The traditional argument would be: if 

the heat taken up at temperature T
1 

is equal to the heat given off at 

T2 , then j<d Q + d W) ~ o along the cycle, which contradicts the 

first law: thus g(T1) ~ g(T2). 

The proofs of this paragraph are not acceptable in the given form and 

the question of the relationships between the different forms of 

the second law needs a further examination. 

outside the scope of this chapter. 

This is, however, 

3. Accessibility conditions and Entropy functions 

* S. l The state space S of a thermodynamic system {t, is a 

separable topological space. * 
The hypothesis of separability needs additional specification to be 

physically fruitful. This specification is given in the definition 

of a simple system (p.187). In C P T the axiom is an implication of 

the supposed 'measurability' of the systems, with 'meters' for which 

real valued internal energy and deformation coordinate functions could 

be defined on the basis of topological properties expressed in cJ: ~ ~). 
(see C P T 3.16, 3.20, 4.3). 

* Ace 1. 

* L.3 

~ is a linear preorder in S * 
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If the interval topology (S, ~) is chosen , s uch that 8 1 < 8 2 i ff 

s
1 

+ 8
2

, then L. 3> i s t r ivial, except the implication t hat there 

do not exist 'first states' . The author has presumably in mind 

that the state space is determined through 'mechanical coordinates' 

e.g. the internal energy U and deformation coordinates ~ in case 

of 'simple systems ' . I agree that for the restricted purposes 

of this paragraph only the separability of the phase space is needed. 

* Acc. 2 If s 1 + s 2 then there are neighbourhoods N(s1) and N(s 2) 

of s1, s2, respectively, such that if s £ N(s1) then 

s1 + s 2 and if s £ N(s2) then s1 + s * 
Again, some specification of the topology of the state space is 

desirable to give the axiom physical significance and to exclude 

a choice (S, ~) which makes the axiom trivial. The counterpart of 

the axiom in C PT is the assumption that S(U, ···~· ••• ) is 

continuous at all occupied points of phase space (C PT 4.26). 

4. Composition of systems : Additivity of Entropy 

* Systems 61 and 62 will be said to be isomorphic if there is 

a one-one map of the state space of <b1 onto that of 6 2 which is 

a bomeomorphism and preserves all thermodynamic relations. * 

The corresponding term in C PT is 'identical'. Whether sys t ems. , 
which differ only in extent are excluded from being isomorphic is 

not certain: in this case there exists a one-one map which associates 

'similar' states (see C P T 0 (2)). 

* A system 6 is called the composition of systems c'J-, 6 2, ••• , 6n and 

is written 6 •· {61 , G.2, •• • 6n} if there is a homeomorphism of the 
l 2 n ,> product space S x S • •• • x S onto the state phase of~ such that if 

{s
1

, s2
, •• • ,an} is the stace corresponding to Cs1, s 2 , •• • , sn) then: 

Int (a) 
1 2 

{e • 8 • 

l 2 r-1 r r+l n {s , s , ••• s , s
1 

, s •••• ,a } -+ 

r-1, r r+l n} 
1
.f d 1 .f r + r ••• a s 2 , s 9 •••• n on y 1 s

1 
s

2 
• 
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Int (b) If 6P is isomorphic with~ the state derived from 

(s 1 , ••. , sP, ••• ,sq , ••• )by permutation of sp and sq is reversibly 

accessible from it, 

Int (c) If A, Bare complementary subsets of {l, 2, .•• n} and~ 
is the composition {~l, ~2, ••• cbaP} and (! is · Id.bl, ••• 6bn-p} 

then c5 • {d:. A, ~} * 
The relationships between this definition and the 'metrization axiom' 

in C P T (2.9) are straightforward. C P T 2. 9 iii: if z ..... z.. => 

z' ..... z .... , then z' => z' .. has no counterpart in the above definition, 

but this property is used in Cooper's proofs as well. It might be 

necessary to consider iii also as a defining property of compositions 

in Cooper's sense. 

* Int 1. There is a class of elementary systems, which have simply 

connected state spaces. This class contains at least four 

systems isomorphic to a system 6. The composition of any 

four elementary systems exists. * 
The elementary systems, with connected state spaces correspond in 

C P T with an entropymeter, which can be duplicated. The meaning 

of the term 'connected' in this axiom becomes clear through its 

consequence: the existence of (empirical) entropy functions whose 

values form an interval of the reals. Connectedness is thus closely 

related to the first property of the entropymeter in C P T: 

('I_, !l.) =! (R', <) (C PT 2.17). 
CJ 

I do not feel the need to avoid the assumption that the composition 

of any two thermodynamic systems exists. In a discussion of the 

relations between mathematical foundations and physical content of 

a theory a distinction between mathematical existence and physical 

existence might belElpful. It is also not clear to me in what 

sense the assumption leads to an infinite regress. 
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* Theorem 2. Under the assumptions of Ace 1-3 and I nt 1. ther e is 

a function ywhich is def ined on the state spaces of 

all elementary systems, which is ent ropy function for 

any one sys t em, and which is such that the function 

r Cs
1) + ~ (s2) of . {s1' s 2} is an entropy function 

for {61, ~2} * 
This theorem is identical with C PT 2.19 and 2.16. A part of the 

proof in C P T is borrowed from Cooper's proof: Lemma 2 and 

its proof is adopted without alterations, the extension from 

states with dyadic entropy values to all states is carried out 

more explicitly. The definition of an entropy function for 

arbitrary elementary systems and the proof of the extensivity 

of this function is closely followed. 

The essential difference between the proof of theorem 2 and the 

approach of C P T is caused by the impossibility of using 

Caratheodory's principle (L.3 1
) and Buchdahl and Greve's continuity 

assumption (Ace 2) before a phase space, preferably (U, ···~ ••• ) 

is specified. In C P T preference is given to the definition 

of extensive internal enel§' and deformation coordinate functions 

and extensive entropy functions, on the basis of ad hoe suppositions 

with respect to the properties of the meters; next the maximum 

entropy principle is introduced together with continuity assumptions 

which imply Caratheodory's principle and the associated continuity 

assumption. This choice has consequences for the proof of Theorem 2 

in C P T: the first part of lemma 1 cannot be proved and is introduced 

as a defining property of the entropymeter. Lemna 3 is replaced 

through the 'calibration property' of the entropymeter. In the 

further development of C P T the properties of the entropymeter 

may be considered as a consequence of connectedness (global) of 

the phase space of t he eutropymeter. 
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5. Internal Energy and Temper ature 

The content of this paragraph can be characterised as an attempt 

to define the concepts 'adiabatic interaction', 'adiabatic isolation,' 

'i nternal energy,' 'diathermal interaction' and 'thermal equilibrium' 

in terms of the 'ground theories.' This conforms to the traditional 

approach which tries to define thermodynamical concepts on the basis 

of mechanics, e.g. the 'mechanical definition of heat? 

In C P T a quite different attitude is explained: adiabatic isolation 

and diathermal connection are primitive terms of the theory. It is 

a certain preorder relation and a certain equivalence relation on the 

set of all states. A definition may be attempted on a level different 

from the formal th~ory, but a satisfactory reduction to mechanics 

(or more general: 'grotmd theories') does not exist in flI'J opinion. 

Similar remarks apply to 'internal energy.' It is in flI'J opinion 

an irreducible thermodynamic concept. A definition of internal 

energy on the basis of the first law, as in E 1, introduces the 

concept of an adiabatically isolated system, and the latter concept 

cannot be explained in purely mechanical terms. In C P T an internal 

energy function is defined on the basis of a primitive 'energetic 

isolation.' The extensivity (additivity) of a certain constructed 

energy function can be proved, and this procedure which is closely 

related to traditional calorimetry, seems to me preferable to the 

axiomatic assertion of the additivity of the internal energy in E 2. 

* Temp 1. There exists a real valued function 8(s) defined for all 

states of all simple thermodynamic systems, which is such 

that two states s1 and s2 of any two systems are in 

equilibrium if and only if 8(s1) • 8(s 2). For a fixed 

configuration x, 8(x, E) is a strictly increasing 

function of E. * 



125. 

This axiom has three parts: thermal equilibrium is an equivalence 

r elation on the set of all pairs of states of simple thermodynamic 

systems; there exists a map from the set of equivalence classes 

of equal temperature onto a subset of the reals; 0(x, E) is a 

strictly increasing function of E at constant x. These three 

statements are part of traditional thermodynamics in a Kelvin-Clausius 

or Caratheodory approach. I agree with Cooper that the proof of 

the existence of a real valued empirical temperature function from 

a Zeroth law cannot be carried out without additional suppositions 

which make the profitability of the proof questionable. 

In C PT the first part of Temp l is present as an axiom (C P T 1.2). 

The introduction of an empirical temperature function appears not to 

be necessary; the maximum entropy principle and associated continuity 

ass~ptions imply the existence of an absolute temperature function 

l/T :(as/aE) and the convexity upwards of S(E) , from which follows x x 
that T(x, E) is a strictly increasing function of E at constant x. 

6. Absolute Temperature 

* Ace 4. If ~l and (} are any two systems which 

"l"b . . 1 2 h h equi 1 rium 10 s , s , t en no ot er 

are in thermal 
1 2 state {s , s } 

0 0 1 2 
of the composed system ~ , ~ } in which each system 

is in the same configuration is accessible from the 

{ 1 2} .. state s , s • * 
0 0 

This axiom can be regarded as the maximum entropy principle in a 

global form, restricted to a subspace of cons tant 'configuration' 

(only exchange of the energy between the part systems is permittedi 

The proof tbta.t S(E) is convex upwards and that (as1/aE1) 1 • (as2/aE2) 2 x x x 

if 9•s1
) • 0(s2

) is standard. That the left hand and right hand 

derivatives are equal is not proved convincingly: pethup continuity 

of 0(E, x) is supposed. 
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