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PREFACE

This thesis contains two parts. Chapters 1 — 6 contain an exposition
of an axiomatisation of classical phenomenological thermodynamics of
closed systems. The framework of this part will be published in the
Proceedings of the International Symposium "A Critical review of the
foundations of relativistic and classical thermodynamics', University
of Pittsburgh (Pa) 1969 (1). The extension of this axiomatization

to open systems is prepared in a contribution for the Internatiomnal
Conference on Thermodynamics, Cardiff, 1970, and will be published in
the Proceedings of this Conference (2). Thae basic ideas explained

in the latter article need further development. Thermodynamics of

open systems falls outside the scope of this thesis, except for
a few remarks.

The proposed axiomatization is characterised as follows:

1 The set of states Zi of a system is structured through
(a) the existence of "connections", defined as equivalence

relations, generating the classes of equal temperature and
generalised forces;

(b) the existence of "isolations', defined as equivalence
relations generating the classes of equal entropy, internal
energy and dimensions; the adiabatic isolation is a simple
preorder in zi.

2 On the basis of accessibility relations for adiabatic isolation
and for energetic isolation for the composition of systems
we can define extensive entropy functions Si and internal
energy functions Ui. A similar procedure can lead to

extensive deformation coordinate functions in.



3 The maximum entropy principle and a minimum encrgy principle
in a local formulation, and certain continuity assumptions
imply the existence of absolute temperature and absolute
force functions. By strengthening the extremal principles
and the assumptions concerning the occupation of phase space,
it is possible to describe the behaviour of systems in the
domain of negative absolute temperatures and at the boundaries
of phase space.

The original traits of this axiomatization, apart from inj: ents

of certain parts of earlier work in the field, mentioned below, are:

The construction of an extensive internal energy function with
the help of a system which can be interpreted as a calorimeter :
the measurement of internal emergy differences is thus reduced

to caloric measurements.

The formulation of the maximum entropy principle as the fundamental
relationship of the extensive and intensive variables of a thermodynamic
system.

The introduction of a minimum internal energy principle which leads
to the definition of absolute force functions and which establishes
the independence of thermodynamics of mechanics.

The analysis of the properties of thermodynamic systems at the
boundaries of phase space, including a restatement of the third law.

The second part is a critical analysis of other axiomatisations which
cover the same field, and which are attempts to develop a theory,
starting from accessibility relations. Within these limits fall

the article of G. Falk and H. Jung in the Handbuch der Physik (3),

R. Giles' Mathematical Foundations of Thermodynamics (4),

J. L. B. Cooper's article in the Journal of Mathematical Analysis



and Applications (5) and J. J. Duistermaat's article in Synthese (6).

L. Tisza's contributions, collected in Ceneralised Thermodyamics (7)

lie outside this frame. In many respects his work starts where my
wor k ends, with a small overlap in Chapters 5 and 6 of this thesis.
Similar remarks can be made with respect to P. T. Landsberg's
Thermodynamics (8), which may be considered as a preparation of

much work in the field of axiomatics of thermodynamics, through a
careful analysis of the presuppositions of the traditional presentations
of the subject.

The discussion of the contributions 3 - 6 is undertaken because there
is certainly a lack of mutual criticism in the field of axiomatisation
of thermodynamics. A criticism of the work of Falk and Jung does not
exist and only Duistermaat gives a more than incidental comment on
Giles' work. However, Duistermaat's approach is so closely

related to Giles' that objections against the latter contribution
hold also for the former. This critical analysis should not be
considered as negative: the attention given to these books and
articles is not least intended to express esteem for the valuable

work in the field delivered by the authors.
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CHAPTER I INTRODUCTION

The aim of this introductory chapter is to give an outline

of the formal theory, as developed in detail in the following
chapters, to give an interpretation of its primitive terms,
and to make general remarks about its relationships to the
traditional presentation of thermodynamics. Traditional
thermodynamics includes different approaches: ‘the Kelvin-
Clausius approach, the theory developed by Carathéodory,

and the Gibbsian approach. It is neither my intention to deny
the differences in these three presentations, nor to assess
these differences. I will refer to "traditional thermodynamics"
only to clarify the physical relevance of the formal structure

Ei“nc

The outline of the formal theory is given in the form of a set
theoretical definition of the concept"set L of closed, commensurable,
thermodynamic systems". In such a definition the primitive terms
of the formalised theory are enumarated as well as the primitive
relationships applying to the theory. The axioms of the

following chapters can thus be considered as a restatement for
reasons of convenience at a place where we actually use those
propositions. To avoid unnecessary repetitions I will not formulate
all the axioms explicitly in the set theoretical definition of

this chapter, but refer to the precise statements in the following
chapters. Different parts of the definition will be followed by
short indications about the results which follow within the formal
theory from the foregoing statement. I do not inten@l to give
precise "rules of interpretation" for the primitive terms. This
would presuppose a sophisticated use of the language of experimental
physics and of a "meta language" which connects experimental

physies with our formal theory and neither of the two are sufficiently
specified to fulfill this task. The remarks about the interpretation




of the primitive terms are meant as an indichtion how the
statements of the theory can be translated in physical terms,
and they will meke it possible to judge the relevance of the
formal theory of thermodynamics as a physical science.

General remarks and notes with respect to the interpretation
will succeed immediately those parts of the definition to
vhich they refer. The formal theory can however be considered
as self-contained and thus independent of these remarks. To
distinguish the formal theory proper from other parts of the
discourse I will separate these parts by horizontal lines.
Formal parts start and end with the sign 4.

Systems, states.

A
A set X of closed, commensurable, thermodynamic systems is a
set X of sets (or formal systems) ¥, of elements (stetes) z;
such that:

(=3
1l i 2+ &L then z; zje;t.

"..:.. '] " e - -
The set zi {zi, z.'s 25 } is interpreted as the set of

all possible equilibrium states of a closed physical system, say
G;, the latter being defined through a description in terms of
experimental physics. The interpretation of the cartesian product
of the sets Z; and Bj, or the "composition" of the formal systems
Z; and Zj, is that it represents the set of all equilibrium states
of the system, consisting of the physical systems G; and G;j'
combined physically in such a way, that every duplet 25 ’j can be
considered as an equilibrium state of the combination, and as the
conjundtion of the states z; and zJ. of G; and G;j separately: i.e.
the systems G, and G.'] are "not connected at 211" i.e. "isolated
vith respect to each other."



3.

Connections, thermal and generalized force connections

A

1.2 There exists a "direct thermal connection', Cg» being an equivalence
1 x . R - < - N

relation on Ui j zZ; zj, Z;s z3 € ;ﬁac L,

?

1.3 1f 2z, zj eZ., then (z; x zj) r‘\ce € ':éa.

A connection C for the family “L of sets (formal systems)
Zss Zj, --- can be defined generally as a relation on the set

U 2, % zj, this being the set of all duplets :izj which can

i, i

be formed from the elements (states) of the sets Z; € P 4

(also included the duplets of identical states zizi)- A relation
on Ui,j z; x Zj is a subset of this set. A connection

C can be interpreted as the set of equilibrium states zizj of a
physical combination of the physical systems Gi and Gj (with

gsets of possible equilibrium states zi and 2:j respectively)

such that not every duplet of equilibrium states of G; and Gj

is also an equilibrium state of the combined system. Thus we
call two systems connected if not every pair of equilibrium states
of the two systems separately is an equilibrium state of the

combination.

A special class of connections are those connections which

have the formal structure of an equivalence relation.

An equivalence relation on Ui 3 Z; % Zj is a relation Fsuch that
»

for all z; € Zi, zj € Zj and z, € Zk

(i) z;2; € 0 "reflexivity"




L.

(i) iz z;2; € then 252 cp "symmetry"

(iii) ifzz, €0 andz,z ep thenz;z £ "transitivity"
It will be immediately clear that many ways of connecting
physical systems in practical experiment have the properties
associated with equivalence relations. Usually these
properties are considered as self evident and not worthwhile
mentioning. Only the transitive property of the thermal
connection gets a different treatment in traditional
thermodynamics.

The set &7 p can be interpreted as the set of closed systems
for vhich a unique temperature function is defined, i.e.
systems which have a temperature, and which are not divided by
adiabatic walls vhich make it possible to have different
temperatures in different parts.

The set (Zi x Zj) N ce contains all duplets ‘izj of equal
temperature and is thus the set of equilibrium states of the
thermally connected systems Zi and Zj; sometimes we write for

n -
Z; x z.j Cy : Z;(0) zj.

The statement of the existence of a thermal connection is
closely related to the introduction of an empirical temperature
function viliaz‘eroth law. The zeroth law formulates the transitive
property of the thermal connection. The difference between our
approach and the zeroth law approach is that we do not use the
much stronger assumption that the thermal connection relation,
restricted to the domain Zi x Zj is an analytical function of a
complete set of independent variables of the two systems, which
would necessitate us to introduce deformation - and force-
coordinates, and that we are precise in the formulation of the
mathematical properties of the thermal connection relation, The
existence of a real valued empirical temperature function
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will consequently not be proved, and appears superfluous for
the derivation of the existence of an absolute temperature
function with the desired thermodynamic properties. The thermal
connection relation decides only whether or not two states are
in thermal equilibrium (say "have equal temperatures"), an
order is not established.

A
1.k There exist "direct generalized force connections", C

‘k »
k & N, vhere N is a set of integers indicating "different
kinds" of force comnections; C, being equivalence relations

x
onUi’j Z;x 2,3 3,2 € ggﬁc;z’.

1.5 1f 2,2, € ;z&, then (2, x 2,) N c‘,ll = :,z.k .

In traditional presentations of thermodynamics force-variables
are tacitly introduced as acceptable coordinates describing the
state of a system. The philosophy behind it is presumably that
a foreknowledge of mechanics, electrostatics, etc. is presupposed
and that only the thermodynemic concepts ' proper: temperature,
heat, internal emergy and entropy need definition, and that these
definitions can be given purely in terms of the presupposed
disciplines (e.g. the "mechanical definition of heat"). The
philosophy behind our approach is quite different: it seems
impossible to reduce thermodynamics to mechanics etc; there are
necessarily non-mechanical primitive terms in thermodynamics, in
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this axiomatization "thermal connection", 'adiabatic isclation"
and"energetic isolation". That the latter concept is
thermodynamical will be clear if we remind that it leads to

the definition of an internal energy function and intermal
energy cannot be identified with mechanical energy in case of
non mechanical systems. It seems worthwhile trying to formulate
thermodynamics without foreknowledge of other parts of physics,
and it is perhaps possible to consider mechanics (or st least
statics) as a special case of thermodynamics (thermostatics),
namely "thermodynamics™ restricted to those systems, which do
not contain thermal systems and for whichasll pairs of states

are reversible adiabatically accessible. This last remark needs
further clarification, vhich however cannot be given here.

An attempt to present thermodynamics without foreknowledge of
mechanics forces us to introduce "mechanical" concepts on the
same level as thermodynamic concepts. The force concept can be
introduced in striking similarity with the temperature concept.
In a first stage ve state the existence of generalized force
connections as dquivalence relations: such a relation does nothing
more than reply "yes"™ or "no" to the question whether two states
of a certain class of systemsare in KB force equilibrium. A real
valued force function is not defined through it. In a second
stage we can define an "absolute force"™ which can be interpreted
as the force variable which is traditionally borrowed from
mechanics ete.

For the description of all the possible ways in which human
ingenuity can connect systems and which could be called"force
connection" a perhaps unlimited list of equivalence relations

has to be drafted. For instance, two quantities of a fluid can
be connected by means of a movable piston (pressure connection) or
enclosed in rigid containers each provided with a movable piston,
vhich pistons are connected through a shaft or a spring. (Mechanical
force connections of a different kind)., Chemical cells can be
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connected with conducting wires (electromotorie force connectior)
ete.

We restrain from specifications by introducing the concept of
"generalized forces" and restrict ourselves to those connections
wvhich can be described as equivalence relations ("direct"

connections). The sets éZ‘ can be interpreted as the class of
k

closed systems for which the connection C, is defined, i.e. for

¢
k
which a e force coordinate exists or can be connected in.away,

k, specified in experimental physics, and for which the kth force

coordinate is uniquevalued.

The set (%, X 2.) (\ ¢,  (or 2.(¢,) Z.) has to be interpreted as
i J k 3K )

the set of equilibriumstates of the systems Zi and Zj, connected
with respect to the ktb‘ force coordinate.

Isolations, adiabatic, energetic and dimensional isolations

A
1.6 There exist for all Zi € Z "edisbatic isolations" (Is)i

or = ., being simple preorder relations defined on Z, » Zs

Zi & oZ , and such that "extensivity or metrigation axioms for

entropy" hold (axiom 2,9)

J:.'f There exists an entwopymeter Zo(deri.ni.tion 2.17) and 2ll

ZiGX are S-measurable (definition 2.21) with respect to this

meter (axiom 2.22)
This leads to the definition and existence proof
of a set of extensive or additive entropyfunctions
5;(4,) for the domains Z.,, %, & .




In traditional thermodynamics isolations are usually defined
as specified relationships between a system and its environment.
Many times these definitions take the form of negative propositions;
e.g. adiabatic isolation is defined as the non existence of thermal
connections between the system and its enviromment. This invokes
the difficulty of the introduction of the envirorment of a system
and the inconvenience of definitions in the form of negative
statements. In case of adiabatic isolation we can get around the
last by a définition of the form "a system is adiabatically
isolated, if all the connections between the system and its
environment are force connections". But this policy compels us
to list all force connections, also the less obvious "indirect"
ones, and does not relieve us of the task of defining the
enviromment of a system.
These difficulties do not arise if we define isolations through
"accessibility relations", which explain which processes are
possible under the given isolation (in case of the adiabatic
isolation) or which states are linked by possible processes (in
case of the other isolations). The adiabatic isolation has the
structure of a simple preorder relationm.
A simple preorder on the domain Zi is a relation g on Zix zi such
that, for all zi,zi',zi",zi"' & I

(i) (zizi) ey reflexivity

(ii) (zi'zi"> Epor <zi“z;7 € { (or both) comparability

(iii) if Cz,'2,")€ pand (zi"zi"'}epthen (zi'zi"')ep

transitivity
The duplef of states {si'zi") vhich belong to the adiabatic
isolation relation (Is)i must be interpreted as the initial state



9.

and final state of a possible adiabatic process. A much simpler
> E (Is)i. b)‘
z.”=> . z.”7, or more shortly z.” —> 27" . The omission of the
i i i i i
index i is allowed because the indices of the states before and

-

notation will be the replacement of <zi' z;

after the arrow determine already the system for which adiabatic

isolation is meant.

The axioms for the simple preorder can thus be rewritten for the

case of adiabatic isolation as follows:

- -n ,—
s . . Z
For all 25 257, 2377, 25 € Z;

(i) z; = z; reflexivity

(ii) zi’ => zi" or zi" => zi’ (or both) comparability

- P

o . T s
(iii) 4if z; z;

and z.”"=> 2z.””” then z.” => z.
i i i i

transitivity

This notation has the additional advantage that it is immediately

-

clear that zi' => zi‘ is the representation of a possible process.

We will reserve the notation <zi' zi"> to indicate a more genmeral
"process", impossible or possible. This latter duplet of states must
be well distinguished from the duplet zi' zi" which indicates an
equilibrium state of the composition Z; XZ;.

The metrization axioms explain how the adiabatic isolations => 13Kk <os
of compositions of systems Zi x Zj X Zk x =--- are related to those

of the component systems -bi. =¢j. => K They aim to be sufficient
and necessary conditions (together with the proposition stating the
existence of a special system, the entropy meter) for the existence

of entropy functions with additive properties. After this stage this
approach comes together with that in which the existence of such an
additive entropy function is assumed axiomatically.

(Tisza (7),Callen H. B. Thermodynamics {Wiley N.Y. 1960))

The term "possible adiabatic process" needs specification in the light
of the formal properties of the adiabatic isolation relation. In

the first place: processes which can be approximated as
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closely as desired by possible processes will also be called
"possible": thus adiabatically reversible processes are
possible in both directions.

In the second place, the fact that an adisbatic isolation is
defined also for the composition Zix Zj of systems Zi and zj

implies that also all the states of a composition are comparable:

" or g Vg M L
3 AL T g T 5 )
This means that ddiabatic isolation of the composition must be

understood in a wveak sense: the systems Gi and Gj are together

[} w ' " ' 1 n
thus (Vzi 023 "s% " )z, 2.t o5 2"

adiabatically isolated with respect to their joint environment,
but adiabatic walls between the two systems may be removed
temporarily. In the third place: the metrization axiom
] n ] n . . n
(Vr.i sevests ) (z.i eeZy =» Permutation of 2, 'eeez; )

implies that we have to allow the use of additional systems,
which describe cycle processes, within the isolation. E.g.
consider two identical blocks of copper Gl at a temperature of
100° C and G, at at temperature of 0° C. The axiom implies
51(100") 32(0)" = z1(0°) 52(1003. Such a process is however
only possible with the help of for instance a carnot engine.

The latter property of the adiabatic isolation is more explicitly
implied in the first metrization axiom

(v zi!,zi",zj) (zi':zj => zi":j iff z.'= zj"),
where zj may be interpreted as the initial and final stake
of a cyelic process < 5; S, S o
For certain systems Ziﬁ the adiabatic isolation reduces to
a symmetric relation: all the statesof the system are reversibly
adiabatically accessible. We interpret these systems as ''pechanical

systems”. The entropy function Bi(:i) reduces to an arbitrary
constant.
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1.8 There exist for all Zi E Jf"energetic isolations'',

»

(Iu)i or (u)i, being equivalence relations defined on zi X Zi

Z; € L, and such that "extensivity or metrization axioms for

internal energy’' (axiom 3.3) hold.

1.9 There exist an energymeter zv (definition 3.16) and all
zi ¢ Z are U-measurable (definition 3.19). with respect to this meter.

This leads to the definition and existence proof of
a set of extensive or additive internal energy functions
-Ui (zi) for the domains zi, Zi e X,

We cannot introduce the thermodynamic concept "internal enmergy” in
the usual way via the first law, if we intend to develop
thermodynamics independent of mechanics. The concept of "work" is
borrowed from mechanics and a definition is not possible without
the help of an absolute force function and additive deformation
coordinates. The solution chosen here is the introduction of
the primitive concept "energetic isolation' as an equivalence relation
which explains whether or not two states of a system "have the same
internal energy'. In traditional thermodynamics energetic isolatiom
implies adiabatic isolation: thus traditional energetic isolation
invokes an order in the set of equilibrium states of a system; to
be precise: a partial preorder with the properties reflexivity and
transitivity (the comparability of the simple preorder is thus lost.)
The formal description of the energetic isolation as an equivalence
relation assumes however symmetry, and aj interpretation ag energetic
isolation in a traditional way is thus not suitable.

We shall interpret zi' zi" £ (Iu)i or zi'(u)zi" as 'the states

zi’ and zi" are linked by processes possible under energetic

isolation (in a traditional way) of the system Gi‘ L



A
1,10 There exist for all ¥, € o  "kth dimensional isolations"

(ka)i, or (ﬁ)i' being equivalence relations defined on Zi X Zi,

2, & oL , and such that "extensivity or metrization axioms for
the kth deformation coordinate™ hold.

1.1l There exists a meter zEk for the kth deformation coordinate
and all Zi € &L are xk-mmun.'ble with respect to this meter.

This leads to the definition and existence
proof of a set of extensive or additive
deformation coordinate functions X, .(z;) for
the domains . .Z;, Z; & &Z.

The statement zi'zi" [ 4 (Ix.); or :i'(xk)zi" will be interpreted

as: "the states zi' and si" are the outer states of a chain of
possible processes under kth dimensional isolation, or under

constant value of the kth deformatim coordinate (e.g. constant
volume)"™

The concept of dimensional isolations is introduced as an interesting
possibility to define extensive (additive) deformation coordinates in
s similar way as we defined extensive (additive) entropy and internal
energy variables.

Whether this approachithas more than a formal significance may be
doubted. If preferred one may replace this set of axioms by the
straightforwvard statement of the existence of a set of additive
(extensive) deformation coordinates xkiz

A or
1.10* There exist extensive or additive deformation coordinate
functions xki(zi) defined on Z; & Z
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Looking in retrospect to the above remarks it will be clear that
they cannot be considered as rules of interpretation. In a
certain sense the question of interpretation is begged. We have
associated the primitive terms of the formal theory with terms of
the physical theory but not answered such questions as: how to
decide whether a physical object can be considered as a closed
system; how to decide whether a relationship between physical
systems is a thermal connection, a force connection, or that a
physical system is adiabatically, energetically, or kth dimensionally
isolated. These questions lie however outside the scope of this
work and I will not try to give a provisional answer, aware of the
considerable difficulties into which we are led..

Extremal principles, abdolute temperature and absolute forces

A

c .U :
1.12 The systems Zi 5ze have a phase space [ FERREEL xki“"],

k € N, < N, vhere N is the set of integers which indicate the

different kinds of deformatiencoordinates (axiom L4.3)

The axiom is usually either tacitly assumed or an implication of
other assumptions, For instance, it follows from the assumption
that systems Zic ,’(a have a phase space [B, cee in...] and
that Ui is a monotonic increasing function of the empirical
temperature 0.

The importance of this axiom lies in the selection of a preferred
set of varisbles for systems Z; € o'(a, which are interpreted as
systems without adiebatic partitions. The set of variables

[ Ui"" X.n “ee ] s Which are all extemsive, plays a crucial
role in the further development of the theory and diflculties which



1k,

arise through the choice of other sets of variables, e.g.
[_9,-0- Xu ...] . Caused bydiscontinuities or kinks in the

3(3...&).,.-.) or u‘e,oooxki.o.) mctim can be Bmidﬂd-

A
1.13 For systems Zi &L 8 the maximum entropy principle
(axiom 5.1) holdse
: "

This leads under certain "local continuity assumptions
ttheorem S .il) to the definition of
an absolute negative reciprocal temperature function

N(z;) = - 1/'2(:i) (definition 5.13)

l.1% The systems 2. (=4 70 are measurable with a set of
absolute thermometers, covering together the temperature domain
~-@ < N < +o_ orasubdomain (axiom 5.15);an absolute
thermometer being a system of & g for vhich certain "continuity

assumptions” hold.
A

The maximum entropy principle, introduced in thermodynamics by
F.W. Gibbs, is by many authors recognised as a powerful axiomatic
starting point.

Its precise formulation has given considerable difficulties. Tiasa
was presumsbly the first to give an unambiguous formulation. Our
formulation is adapted to the theory, as presented here, but
closely related to Tiswa's.

A

1.15 For systems 7, & Jl;k the "mechanical™ minimum

energy principle (axiom 5.2 ) holds.
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This leads under certain "local continuity
(#heorem 5 |2) assumptionsy to the definition of an

absdute force function Fk(zi) (definition 5.14)

1.16 The systems Z; € z‘k are measurable with a set of

absolute dynamometers for force k, covering together the force

domain - & < Py < + », or a subdomain; an absolute dynamometer
force k being a system of < . for which certain "global
k

continuity assumptions" hold (axiom 5.16)

In a development of thermodynamics, which does not presuppose
mechanics, & minimum internal energy principle is no less
important than the maximum entropy principle. It has in its
formulation striking similarities with the latter principle.
It leads to the introduction of an absolute force concept,
which can be interpreted as the force, usually borrowed from
mechanics. Its definition is of a static character, it does
not presuppose newtonian dynamics or similar theories.
Together with the maximum entropy principle it yields the
Gibbs fundamental equation for closed systenms:

as; =(1/mladl -s_l;‘m) F,LdX ..

The mechanical minimum energy principle must be distinguished
from the Gibbsian minimum energy principle, which can be proved
equivalent to the maximum entropy principle within the framework
of the theory.

A
1.17 For all Z; € o o 8;(z;) has a lower bound

(axiom 6.8)
This leads in the case of systems for which

"global continuity assumptions" obtain, to
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the existence of bounds for the energy

and deformation coordinates (theorem 6.5)

and to certain properties of the systems
concerned at the boundaries of the domain

of definition in the phase space [Ui' "'xki”':l
(theorem 6.6).

1.18 For all zi ex: N f’f - Si (II:.l xu) is independent

of Ui and xki (all k € Ni) or

lim 38. (z.
T(zg) + 0 [a A 1):| =8
N(zi) <o & *
T(z) o | 33— = o
N(z;) > o s z

These axioms comprise all that still has to be stated to cover
the traditional content of the third law. Different aspects
of the third law appear already to be consequences of the foregoing

axioms.
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CHAPTER 2 : ENTROPY

In this and the following two chapters I will develop mainly the
formal theory. This will be done in a series of axioms, definitions
and theorems, which again are considered as self contained. It
appears however profitable to embed this core in a text, that
explains the main lines of thought and stresses the more important
results. This text belongs also to the formal theory. We do not
need special signs to separate axioms, definitions and theorems from
the embedding remarks, except that we mark the end of a proof with
the sign . In the few places where we kave the formal theory,
for instance to explain the physical interpretation of a certain

statement or symbol, I will again use horizontal lines and the sign A.

A
The aim of this chapter is to construct a set of extensive entropy
functions Si(zi) for the systems Zi £ :z.

2.1 Def. A set of extensive entropy functions Si for the systems

Zi € 1L is a set of real valued functions Si(zi), z; € zi,

such that
(i) 5;(2;7) 5 8.(2;,"") iff 2z, z,
(i) ifz=z xZ, x__  then

S(z)

S(zi zj ....)=Si(zi) + Sj(zj) +

For the construction of such a set of functionms, conditions of different
kinds must be fulfilled.
The first kind consists of relationships between the adiabatic isolation

relations = of the composition

ijk ...

Z; 5%

L

zZ; % Zj X Z, % ___ and the adiabatic isolation

relations => i, = js - §b = of the individual component
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systems zi, Zj. 2 We call these relationships

g’
(1] 2 : - (1]
metrization axioms for entropy .

The second kind contains only an existence statement with respect

to a system with special properties: an entropymeter Z

A procedure for the construction of a function Sa(za) and of
functions Si(zi) is given and it is proved that this set of
functions has the properties of extensive entropy functioms.
Starting with a detailed presentation of this part of the
theory we define first two useful relations in terms of the
relation =>.

2.2 Def. 2" +2" " iff 2°=> 2°" and not 277 => 2~

2.3 Def. 27+ 27" iff 2°=> 2" and 27" = 2~

The iaterpretation of these relations will be clear:
z” + 2”7 has to be interpreted as : z”~ is irreversible
adiabatically accessible from z”, and z” +* 2”” means z~ and

z” " are connected by a reversible adiabatic process. The term
adiabatic process has to be interpreted as explained in Chapter 1.

A

The following four theorems give properties of these relations which
we will use in the further development of the theory:

2.4 Th, The relation + is transitive and asymmetric
(i.e. if 2" + 2°” then not 2°° + 2°)
Proof:

transitivity:

-

- -
z T g and z

-

T 2”7, iff (2) 2" = 2"  and 27" => 27" and not 277 = 2”

ardnot 2777 => 2”7, iff 2” => 2°”°° and not z°°° => z” (because
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not z" <> z' and not z'*' = 32" implies not z''' = ',
If not, then (3 z'z"z") not " = z' and not z''' = z" and
2''" > 3z', thus, as =» is comparable, not z" = z' and

z" = 2z''" and 2''' => z', thus, as = is transitive,

not z" = z' and 2" = 2', a contradiction).

Asymmetry follows immediately from the definition U

2.5 Th., The relation +* is transitive, reflexive and symmetric
This follows immediately from the definition.

2.6 Def: The equivalence classes of ++ are called the "classes
of states of equal entropy"”.

2.7 Th. if 2" + 2" and g' «+ 2''' then g''' -+ 2",

Proof:

if not then (3 2'2"2"™) 2' + 2" and 2' > 2''! and not 2''' + 3";
not z'"" + 2" imples (2) not z2''' = z" or 2"=> '

z' > z" and z2' <> 2''"" implies (2,3) z'=>z" and z''"' = 3!
and thus z''' = 2",

t.“ %zlli md :' - zll' imply z" => Z"' &nd ‘lf' E> 3' md

this z" = 2' contradictory with z' +z". O

2.8 The if 2' = 2" and 3' «> 2''! then 3''' = ".

We next formulate the metrization axioms for entropy:

2.9 Ax. For systems Zi, 2.j ez the following holds:

(i) (V 2., zi", zj) (zi' = zi" ife zi'zj = zi"zj)

o 4 n 4 P . n
(ii) (‘»"zi seees I ) (zi «ee 2. = Permutation z.d...z, )

(iii) (v zi',zi") (ir (zi'...zi')n = (zi'... zi')n then

zi' = zi") vhere (zi'...zi')n means a state of a

composition of n identical systems Zi consisting of n identical
states zi‘. The brackets and the index n are omitted many timeg,
because there is never any doubt about the number of states

zi' and zi" involved.



[t is mot difficult to show that the sign > in these axioms
may be replaced by ++ and in the case of (i) and (iii) also
by +. This is the content of theorem 1l and theorem 13.

For the proofs we need some additional theorems.

n n .
2,10 Th, (z;%e.0 2.")" = (2, .0c2,) " iff 2" = 2."

Proof:

: ] . L] L L] n L] { ] L] n_n
].fti 2z thensi Z; q>:i z; andsi z; = 2,72
thus zi'zi' = ai“si" etc. Axiom B.iii gives the other
half of the proof. (]

2.11 Th. For arbitrary systems zi.zj

(1) (V zi',zi','sj) (zi' —r si" ife ai'sj e zi"r.j)

(ii) (V ﬂiti--ollin} (li"‘-otlin > permltntion ‘iioocosin)
(iii) (V zi:si") ( (‘i'--cii')n - (li"nooﬂi.)n iﬂ' Ii' Ead ‘i.)
Proof:

immediate consequences of the definition of ++ and the axiom §
and theorem 10 (O}

2.12

The if 2;%ccees;"eeeez ! +» sl"....zi"....sn" and z,' ++ :i"'
then z,'seez, ""faeez '+ zl".-.zi"...zn".

Proof:

2,0 ezt imples (11.1,11.40) 2,z "ozt e Z,%eeez; s !
This together with z;'...z;%ceez ' zl"...:i"...zn" and

the transitivity of ++ yields the theorem. [

2.13 Th. For arbitrary systems Z., Z5 a <
- '] L. ] '] " 5
(i) (Vzi vE ,zj) ( z;' +2." iff zi'sj +* :i"zj)

(i) (Vz,%,2.") [{:i'...:i')n - (zi"...:i")n irg z." + si']
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(an immediate consequence of the definition of + and
axiom 9 and theorem 10)

The next two theorems will be needed in the second part of this

chapter:
2.14 Th: 1If z;” + 2”7 and z,” + 2,”" and ....
z >z °" then zl" cos zn'+ zl" ses zn" :
Proof:
(13.1) zl' + zl" iff 7.1' zz' - zl” ;2'
(13.1) zz' > 52" iff zz‘ zl” + zz" zl”

Thus zl' -+ zl" and zz' + zz” implies (11.ii, and transitivity

- -n -,

of*).zl" Z2,"*z,"" z R
2.15Th. ifz"»g°” and z" z"" <> z z, thenz" +z + 2"~

Proof:

- - - -

(13.i) z"+z"" implies 2" 2" = 2" "z and 2" 2"" + 2" 277,

thius (3,7) 2" 2 =2 2 "+ ¢ , () 2" a" *e*2"" 2"

-

thus (13.iii) z"+z+2"" |

The entropy meter and its calibration

We define, in a certain sense simultaneously, a special system Z_,
called "entropy meter and a function S5 (z4)." We shall start

with the latter, because it will clarify the properties of the meter.

2.16 Def. A real valued function S(z,) for z;€ Zg is constructed
as follows:



] " ] "
Choose two states 2z , 2z < zq such that z  + 25

s(;;) =0, s(:;) £ 1 ,vewrite z} = zq(O). 8 = sc(l).
s(z,) = } it z(0) 2 (1) « zz ete.
S{:o) = n(integer) iff zczq(n-i)‘ — sa(n-l)' 3, (n-l).
8(z ) =«1 iff zz (1), <+ z,(0) 2z (0) etc.
8(z)) =r (real) iffswp (d:z(d)=>z }=ror

inf {a:z Dz (d) }=r
(In case that S(zc) = n and there does not exist a zJ such that
S(z8) = n+tl wve define : 8(z ) =n+ }ire
z 2z (n - i)' ++ z(n) z(n).)
The above procedure can justly be called a calibration of the
meter ZG.
2.17 Def, An entropymeter is a system Z such that

(1) (.‘.(, * )a{ﬂ'. 4) ,/fi’ '  being an interval of reals and
¢ being the family of equivalence classes

(ii) "™calibration property":
Nzg)N/t‘C(:G) ) (330(4')'. ‘a(d')s)
[au(d')s, za(d")’ & /(_: (xu) and ‘a(d')a v - so(d").j

vhere a neighborhood ./‘:, (z,) is defined as a set
- ' = S 1 L :
{z, : z -+ i * z, } containing L

(iii) (V;;,:;)(La) (2! 27 « z2)
We explain the formalism of (i) as follows: there exists a

similarity mapping from the family of classes of states of
equal entropy, ordered through the relation —» onto an interval
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of real numbers A~ in their natural order < . (ii) can be
worded in this way: every interval {z; 3 za'-9 z; > zo"}
containing Zy » contains also states with dyadic S0 values

zo(d )8 and zg(d )5 such that zU(d )s e zo(d )s‘

Because it is not immediately clear that (ii) and (iii) are
mutually independent, we prove this by showing that a system
can be defined for which ax.9 and properties (i) and (ii)
obtain and for which (iii) is falsified and a system for which

ax.9 and properties (i) and (iii) obtain and (ii) is falsified.

Suppose a system Z such that 17 (i) and (ii) obtans and such that

the composition Z X Z satisfies:

ifr ¢+ <2

3 + 1, then z(rl) z(rz) +'z(r3) 2(14);

2
if I +r, =1, %71, = d then z(rl) z(r2)1+’z(r3) z(ra);

3

if I, +r,=1r,+r1, # d then
: & 3 (rl - r2)2 < (r3 - rA)z then z(rl) z(r2)‘+ z(r3) z(rh)
if (r1 - r2)2 = (1.'3 - ::4)2 then z(rl) z(rz)ﬁ' z(r3) z(r4)
We can check that ax. 9 is satisfied in this case, However,

if r; * 1, # d and I, # T, then there exists no state z(r)
such that z(r]_) z(rz) @ z(r) z(x)

Remark: in this example however,
Wz@"), z@"7)) @Ez@) (zd") z@ e z(d) z(d))

It can be proved that this is a consequence of property (ii).
A strengthening of property (ii) in the following sense makes

(iii) a theorem:

(ii-a) Gz, zJ7) G.og(z] 2;7)) @z (dl). z,(dy), z,(d3), 2z (d,))
{z;(d)) 2 (dz), z,(d;) 2 (da) s/sc z;") &

za(dl) za(dz) zé zG - zc(d ) z (dd)}
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An example of a system for which 17 (i) and (iii) obtains
but not 17 (ii) is the following.

Property (i) allows us to map the system Do, <+ onto a line

element 2, while preserving the order. Suppose
S(z)=

W+ r

S(z}- it e e L

-

z2(0) z(1) z*_
figure 2.1 .

the maps of 2z(0) and z(1) lie on the line § as indicated in
the figure. It is quite possible that in the construction of
the function S(z) the procedure fails for all states z such that
z* + z, Ve are forced in this case to the conclusion
S8(z) = S(z*) (= say z) for all z : z* + z, thus S(z) is not an
entropy function. This situation is incompatible with property
(ii), and the maintenance of property (iii) does not lead to
inconsistencies. Suppose for instance that in the domain
{z : z* + z}, choosing two states z(0)”, z(1)“.an« 57(z)
function can be constructed which is real for all z in this
domain, and that we unify the two real valued functions for the
respective domains {z : z => z*} and {z : z* + z} to one function
S(z) which takes in the first domain the values $(z) = r and in
the second the values S(z) = w + r (thus not real). It is
possible to associate with a pair z(rl)z(m + rz) a unique
value @ + ry such that z(rl)z(m tr,) © z(w+ rs)z(m + r3)
without inconsistencies with axiom 9 and properties 17 (i) and (iii)
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On the basis of the metrisation axioms for entropy and the
definition of the entropy meter zc and the function So(zc) we
can prove the following two theorems, the first stating that
the constructed function is an entropy function with certain
continuity characteristics, the second that the function for
compositions of identical systems ZU behaves as an extensive

entropy function.
2.18 Th. For an entropy meter zoz

(@) {r: S(zo) = r} = f\?" where )f’ is an interval

of reals
(b) (Hz(;, z;7) (5(z)) < S(z7) iff 2° +2°)
Proof:

(a) Let K°” be the smallest interval of reals which contains
{r : S(z ) =r}. (17 (iii)) guarantees that for all dyadics
d = p/zg, p,& being integers, if d € ff‘ then there exists

a state z, such that S(za) = d.

The construction of the function S(zo) guarantees that for the
states with dyadic S values the natural order according to these
values is also an entropic order. This is a consequence of
Theorem 15. Thus, if d“ < d°” then zo(d‘)s +-zc(d“)s.

The calibration property 17.ii guarantees that every z divides
the entropically ordered set {zc : S(zo) = d} in a lower and an
upper cut, thus for all z, sup {a : zo(d)s - zc} = inf {d: 5, %}d)slur.

Finally, if r Efe" then (3:0) (S(zo) = r). If not, thus if an
entropy value r is "missing" then we can divide the set (zc,+) into
two succeeding subsets Z _, = {zc: z, = z (), d < r} and

252 = {zc: za(d)d=> Z5 T < d}

01 does not contain a last state, Z 52 does not contain a first state,
and Z \J Z 52 - zg With respect to the mapping
(¢4 o +) > ﬁﬁz <) this implies that also (ﬁz <) can be

divided in two sycceeding ordered sets (el' <) and (f/, <) such that
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L{), has no last element, Qno first element, and ﬁ U @ = {L)
This contradicts the supposition (17.1)

(b) We prove first :if 2§ — 235 then S(z}) & 8(23 )
If not, then 2z} - 25 and S(z}) >  s(z7) ;

z%, > 25 and 8(z3) = 5(z3) implies that all the states

Zg in the interval {a,: ac-v Zg “"ck have the same value
S(:‘) = 5(z}) = S(zj) which contradicts the calibration property.

zy — 2' and S(z} ) > s(z3) implies (Ja)(s (3% )< &< 8(s}))
and this, because of the definition of 5(z), 2 — z{d) and

z{d) > zL , thus z3
The same reasoning leads to : if 8(z% ) < 8(z]) then 25— 1% [J

- 33 , contadictory to the supposition.

2.19 Th. For the compositions of identical entropymeters Zg :
2 lr ) 25 (2)) eee 2, (8)) = 24(8Y) 2,(2]) oo 24lm)) iff

# n ¢ %b"k

Proof?

We prove the theorem first for dyadic rationals in the interval (0,1),
then for all dyadics and finally for all the reals.

We cmit subscripts, writing z(g) in place of z.(¢) e

(i) Dyadics in (0,1) can be written in a form 51211 "

P é{(o,l, ve2®} . If2=0 then the lemma
z(%)'.'. z(dn) % z(di) (LR ] ’(d;) i“ % dh -5 %S

n
is clearly true.

We prove that if the lemma is true for n - 1 then it is true for .
n, or if it is true for dyadics of the form P/ n-l , p€{0 1,00002 1}
then it is true for dyadics of the form I n, q€ {0 R ]
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. ¢ q. ~  P: _
If q is even then we write 9 %n %n 1
l - q. =
If q 1s odd then we write ::1j %n (ij + D/zn
Now (10):

z tql/znj soae z[q%n] -> z[q%n] sese z{qt:\/zn] iff

o]« () ol ) = (54) -

z qyzn‘ z [q{/zn] L, [q;/zn] z [qt;z/zn]

iff [ ....... z [q%n] z [qi//zn] ..... z [qj/z’n] z [qj/{n] ..... ]:}
(SO N R A Y A IR 9 T .

(using the definition of dyadics)

n .. =>

3 3 # . 1 F .*1 -_1
[ z[pl/zn—l‘ z hp1/£n-1‘ coss quJ /’2n] z |9 ®
- b f = 3 rf - - 1 3
[.... z 1"i‘/z'n-l z pi,/zn-l sone B qj*l 2“] z qj 1/2n o—— iff
o L # W
- B 3 .
: = P: - P:¥L.> -
[-.-c Z[ ]//zn ]-J z § 1/211 1J LR z. J /2n l]z LPJ 2!‘.’("1 L] =

3

oF o I9e 2c P+l / (p: ]
[ z[ 1,/2n 1J z h:./znl zkj /zn l]z hJ 2:::—l.J T

&

~
-

iff (supposing the lemma obtains for n-1)
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Elpy +py) + r.(pj iy D g I(pf +p)) + z(pj‘ + pj’ +1)
i ( - -
iff Lq, + qu . Iq; + Iqi
all even q's all odd q's all even q's all odd q's
iff m m
L < E 8
B A -

(ii) The extension of the theorem to all dyadics starts with the
proof that it is true for n= 0, p € {0, 1, 2}

:(pl) sanas BUEY swws z(pm) => z(pi) P :(p;) iff

z(pl) ..... 2(2) cous z(l';m) z (0) = z(pi) ceve :(p;) z(0) iff

1 R 2(1) veee 2(p) 2 (1) = 2(p]) ..n. 2(p)) 2(0)

and this reduces this case to the case n = 0, p £ {0, 1}

In the same way we extend it to p € {0, 1, 2, 3} etc.

The rest of (i) was independent of the value of p.

(iii) The extension to the reals starts with the deduction of:

m
if Z(rl) R z(rm) =2 z(ti) TE z‘r:n) thm E rk

If not then z(rl) vl z(rm) = z(ri) iSh :(r;) and

rl
$ I

=B

m m
L tl‘; < L r, Then there exists a dyadic d such that Ir, <d < Ir,
1 1 x

and sets of dyadics {dk"' }and{d;, e«ss}such that

m m
d = b = ¥ - and ¥, < “  and ¢ T

R s %% < % 4 X
This implies z(r;) > z(dl“') and z(dk) - z(rk) and
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Consequently (1.4) z(rf) eos 2(rp) + Z(di) i z(d;) and

z(dl) e z(dm) + z(rl) A z(rm).

Because de = Ed£ z(d{) —_—— z(d;) P z(dl) ceee z(d)
and thus (7) z(ri) Sisis z(r;) > z(rl) e z(zng
contradictory to the supposition.

Finally we prove:

If r; then z(r,) ... z(r) = z(r{) e z(r;)

If

r]; then again there exist sets of dyadics

=MB =mMB
=MBEB =mMH

{dk .-} and {d;} such that Zrk < Edk = Edﬂ < Erﬂ and

T - dk and d; < r£ . It follows that z(rl) o z(rm) -

m n
z(rl) S z(rm). 1f f L = % r, then z(rl) oot z(rm)'eé z(ri)

will be proved next:

considﬂr the state Z(rl) TEr Z(tm) Z (0) snee & (0) . in total
2* elements z. By & times application of (Az) (z” 2" <5 z 2)
we find:

Jz(x) [z(rl) e z(r.m) z(0) ...z(0) « (z(t-_)...z(r)zgf]

But the first part of (19 iii) gives then ? B 22 ¢ &
1

Similarly we find

3z [2G] ... 2 20) ... 2(0) & (@) ... 2N

I r, = 21 ,

But we suppose that Ir, = Erﬂ, thus r = r”, thus

.-.:(r;)



.'3{11) Bew z{!:m) 3{0; ...3(0] ‘L"'") n(t;) "o z(r;} 3(0) l.-‘(O)
thus z(ry) ... z(r)) <> z(r{) i z(r;)
The following step is the definition of a function Si(zi) for an

arbitrary system Z; e L with the help of an entropy meter Za.
The construction can be called a "measuring procedure”.

2.20 Def. A functiom Si (zi) is constructed as follows:

Choose an entropy meter Z_ and a state z{ € Z;

Si(zi) =0 we write :E = :i(O)’
Si(zi)'- T iff 25 zo(O)di—P zi(O)s za(n)'

(or more generally)

5,(2) = r Lff (zy 25(27, o 2502 )™ (5,00 3 (2™ ..

'0('"))&!1

-~

and n(r"" - ") = 1)

There is still no guarantee that for all states of all systems real

values Si(zi) can be defined, with respect to a chosen entropy meter
Zy if for a system Z; this condition is fulfilled we call the system
S-measurable with respect to the meter Zy-
2.21 Def. The system Z; is S-measurable with the entropy meter 2
if for every z, € Zi S(zi) = r (r being a real number).

The following axiom guarantees that all systems zi € L are S-measurable.
2,22 Ax. All systems zi € & are S-measurable with respect to the

entropy meter ZU

The existence proof of an extensive entropy function defined on all
states z; € Zi’ zi € & is straightforward.
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2.23 Th. For a set of systems zl.....zm obtains for adl the possible

compositions: m m
= ' ' 3 = '
zlogonooqooozm T zlvct ----- zm 1” Z si(&) Z Si(z‘)
1 1 i
Proof
(9.5.) z ...zm — 5'--00. 2' iff

1 1

zlzo_(O)Bu. zmzﬂ,(tj)B =5 zi zo,(O)s... z;l zo_(O)a iff
(20, 8 ) zl(o) zqr(sl(zl))s... zm(O)zU (sm(zm))s =

> 21(0) zo.(Sl(zi))s ..... zm{O) za'(sm(z:n))s iff

(9.i) zcr(sl(zl))s"'"zcr(sm(zm))s = sr.ﬂ(sl(sni))E a(sm(z;))s

m m
iee (19) Zsi(zi) £ Zsi"i)
1 1
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CHAPTER 3: INTERNAL ENERGY

This chapter is an analysis of the conditions which enable us to
construct a set of extensive internal energy functions Ui(zi)
for the systems Z; A

0

3.1 Def. A set of extensive internal energy functions Ii(:i) for
the systems Z; eAis a set of real valued functions
fi(zi.) z; € Z;, such that

(i) fi(zi') - fi(zi”) iff zi"(u) zi”
(ii) if z =z X2, X ... then £(2) = f(:izj o

' £i(z) & £5(z) + .eenn

The construction of such a set of extensive energy functions meets
a fundamental difficulty in the fact that the relation (Iu)i or
(u) ; or (u) is an equivalence relation, which does mot invoke an
order in the equivalence classes of "equal internal energy"”. The

method followed in the case of the construction of the extensive
entropy functions cannot be used without the introduction of
additional properties. There is a simple way to overcome this
difficulty. We establish in the energy equivalence classes of
the special system which will be used as an energy meter

a simple order through the extra requirement that the energy - and
entropy equivalence classes of this system are identical. The

order of the energy equivalence classes which is described through

the relation § u)  is then identical with the order established
by the relation Z?v Thus:

-

3.2 Def: For all z,»2, E Z:

i © € u) . % 3 “ =D g °°
(1) zv . 7 zv zv v
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] - -, L] ' d - .
(1) . .=, <u) z, 1EL Vel E
Other requirements of the energy meter will be explained in the

detailed exposition below.

Our first objective is to define relations £u) for compositions

of identical energy meters, and to derive a theorem giving

properties of the relations g£u), such that this theorem is ifomorphic
with the metrisation axioms for entropy, however, restricted to
compositions of energy meters Z, (i.e. the theorem can be obtained
by replacing the symbol => by the symbol <u) and substitution of

Zy forz,, Zj). This theorem will be derived from the metrization

axioms for energy" and the assumed properties of the energymeter.

Then we define a function U, (z,), isomorphic with the function

Sq (27). The definition of the energy meter Z y is such that,

by replacing in the definition of the entropy meter the indices

8 and o by the indices u and ¥ and the sign * by the sign
<u), properties of the energy meter are obtained. This situation

allows us to formulate and to prove a theorem stating tat U ,(z,)

behaves as an extensive internal energy function for compositions
of identical systems Z,, simply by making appropriate substitutions
in the isomorphic theorem and proof of the former chapter.

The same procedure leads to a definition of a function Uz (zi) for all
systems Z; € & and the proof that this function is an extensive

internal energy function.
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Metrization axioms for emergy, the metrization theorem

In the detailed exposition we will give firstly the "metrization axioms

for internal energy"

3.3 Ax. For systems Z;, Z; € & the following holds
@ vz, 2,7 zj) (2% (u) 2,77 iff 2.7 z (u) 2,77 lj)
() Gz;% eeee 2™ (2" o002 () Permutation z," ... 2,
(iii) C?:i’. :i") (if (:i‘ gias :1‘)n (u) (:1" i :i“)" then
2,7 (w) 2,7
The following theorems are immediate consequences, and will be needed

later:

3.4 The (2”7 «ee 29)% (@) (27 ... 2”9 iff 2° (w) 2°°

Proof:

2” (u) 2°° implies (3.i) 272” (u) 27°2” and 2°2”°” (u) 2”°"2"".
Thus (3.ii) 272" (u) 2”72”° etec. Axiom (3.iii) offers the other half
of the proof. D

n+;

3.5 Th. 1fs® ...s" (u) (=* ...:*)n and z oo zln (u) (z** .., g**)"

then 2 ... 2® (u) 22 ... 2% g a0 (u) z**

The proof is straightforward

3.6 Th. 1f Z]1 cee 81 sen 'B (u) Il‘ se s Ii‘ cee Sn‘ and li‘ (u) li“

-

then 2. <. li“ ane Sn (U) ‘3‘ T Bi‘ ase In

Proof:
zi (u) Sic'i.mlie' (3.1, 3-11) ‘: eaw ‘i soa 'n (U) :l e e zi"o-a .n
Thus the transitivicy of (u) yields:

Ey eeo zi"" cee B (uv) 2,7 ... ui‘ - :n‘ " o
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Next we introduce a generalised form of the definition 2 of the

relations gu) and <u)

3.7 Def. For systems Z such that/ (2) = U(z):

1) 27 ass z° Su) z:m'1 vee 28 ifF 2” ...2° (u) 2% ... z*
1 2
and zn’ can BT (u) z*% _,. z*% apnd z*x => zk%
1
(ii) 22 ...2% <) 2™ ... 2®™ iff ... idem ... and z% + zx#

where z* ... z*X means (z* ...z*)n; the brackets and the index n are
again omitted because there is never any doubt about the number of states

z* involved.

We derive next a series of theorems which will lead to the important
"metrization theorem"” that we need to establish the similarity between

the theory of this chapter and the former:

3.8 Th. For systems Z such thatf(z) -z((z):

the relation <u) on (ZX ... xZ)n X (2% coo ,12)':l is transitive, or

(28" coc B &) AT 2es ' aad o® zzn <u) g D
then z* ... z° <u) gk L 2’0,

Proof:

(D 87 coc ™) & aca 8 L6 5" <0 8° (0) o oo 9% L and

zn“ e zan (u) z#* ., z%% and z% &> %%,

(7) zn“ it zzn <u) zzm'l .“23:: iff zn“ =3 zm (u) zt ... z¥ and

z el A z_an (u) gttt ... st gnd 5T 4 o1t

because (u) is transitive: z*%x __ z¥% (y) z'l' z'r and thus (3.iii)
zkk (u) 2zt and thus z#* £ :1'; z* -y z%% and z** ¢> zT and zT + Tt

implies z* + :ﬁ and thus (5) z° ... 2" <u) zzml z3n . D
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1
3.9 Th. 1f 2% ... ’n (u) 'no ...:zn and ’uol ese :a' <u) lan*l ...l’"
then 2% ... 2" <u) el NS
Proof:

Suppose .n#l cee g8 (u) z¢ ... g* gand l"" ces 8™ (u) st ., zgoe
Thus (7) 2z% + z&% _  The transitivity of (u) implies 2% ... g (u) z* .., z*

Thus (7) 2%...2% <) 22 ... 3. O

3.10 Th. Por systems Z such that b’(z) -‘1Z<z) and
(V‘ ‘! “se 'n) G‘*) (‘1 cse .‘ (“) z® ... ") :
(Vl‘| cae Ian) (li:th.r ‘: cae .‘ <u) lnﬁ see '3n or

2% .. 2™ <) zt...z® or z1...:s° (u) A e 23

Proof:
3Ilpp0l. .‘ see 'n (u) z* ... z* and .ml e ':' (u) ghh . '“ 3
because either z®* + gh* or z*% + gk or g% &> 3* the

theorem follows. [J

3.11 Th. For systems Z such that  (z) = W(2) :

Wz”°, 2°°) (2° eoe 2° <u) 277 ... 277 iff 3° <u) 2°°)

Proof:
Because (7) z2° ... 2° <u) 2°° ... 2°° iff g” + 2°*
and 2° » 2°° iff 2° <u) 2°° follows:

-

2° eso 8" <u) 8% ... 8" 223 <) s . D
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3.12 Th. For systems Z such that (a) Y (2) =z),

(b) OVE"; ssss B (A2RY (8 oo B (o) 28 ... 2%) and
(c) RO A L SRR A S L L £ J

n+ n
B eis BE ) 2R L 2t 2) ¢

+ - - +
Wz", ... 222" (if 27 ... 2" <u) 2""! ... 22" and

B R I et R Lyt B ey

8” cve S0 AT L ™ gy ™ L st ™ zz“*zf)
Proof:

z2” ve. 20 <u) 201 ... 22" implies (c)

2” oee &7 @3S gg) & L. 2P 22™*1 and this etc. ...

2" eee zZ0 g20% e <u) 2201 .. gttty o ane

B TP L <u) P et W L implies (c)

S Lt S L s T LI T i R L ek SR e

this implies (3.1i.9):

R BUR LN, Lok S e T BT TR R

the transitivity of <u) gives finally :

S L RO T T R L i R L W

We are now in a position to prove the two theorems we aimed for,

because they are similar to theorems of the former chapter.
3.13 Th. For systems Z € ©& such that

@ S @ = HUz) and
(b) V2%, c.. 2 @z%) (27 ... 2" (W) z* ... z*)

the relation £u) is a simple preorder on (Z X ...X z)“ ¢ ARE R Z)“

for all positive integers n.



Proofs

the comparability of €u) is implied by theorem 10; the transitivity
of gu) follows from the transitivity of (u) and theorem 8; the
reflexivity of (u) implies the reflexivity of £u).

3.14 Th., Metrization theorem:
For systems 2Z € ﬁb such that:
@ ¥ @ =

(B) Wz"y veuy 20) @2z%) (27 ... 2@ (u) 2% ... 2%)

©) V27, veey 22°, 2) (2% ... 2" <u) Pt B L 11

+
Z” ees ln o <U) :n 1 e Szn z)

) V2%, eee, 220 2) (}' cee 2% gu) 20 L., 2?0 iff
x‘ e In 4 ‘u) zn+l LA zzn ')

gD 0% vees B (E' o 0 <u) permutation z” ... s:)
(ii) =", ) (@f 2* ...3" ) z2° ...z then
z* gu) s")
Proof:
(i) follows from axiom (3.i) and condition (c);

{(ii) is an implication of axiom (3.ii);
(iii) follows from axiom (3.iii) and theorem 11.

The construction of extensive internal energy functioms,
the energy meter.

We start again with the definition of a function U'(:') for
a special system Z_, which properties will be explained afterwards.
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3.15 Def. The function Uv (zv), z, E I‘:,"r is defined as follows:

-

v

- -

Choos e two states z, 5 2 .

-
-+
E Zv such that :v z

1l : we write zv' = zv(o)u.

u, (zv') =0 U, (zv“)

. zv(l)u-

U, (zv) 1/2 iff zv(o)u zv(l)u (u) z, 2, etc.

Uv (zv) = n (positive integer) iff z, 2, (n—2)u (u) z, (n-l)u z, (n—l)u

Uv (zv) -1 iff z, zv(l)u (u) zv(o)u zv(o)u ete.

U, (zv) = r (real) iff sup {d: zv(d)u <i) zv} =
or inf {d: z, <u) zv(d)u} = r where d is a dyadic.

In the case that there exists a z, such that Uv (zv) =n,

and there does not exist a zv' such that U (zv') =n+ 1, we

define Uv (zv) =n+ 1/2 iff z, 2, (n - 1/2)u (u) zv(n}u zv(n)u.

3.16 Def. An energymeter is a system Zv € :ﬁ such that
W Fe) =Ue)
(ii) £, » < @ 9
@i vz & AGY) G, @), oz, @Y
[zv @, 2z, @) e J@zv) and z (A7) +z +z (d"')u:l

("calibration property of the energymeter')

where, again, a neighbou thood v«,(zv) is defined as

s LIPS -+ -
a set {zv z,, z,*z, }

(V) V2, eeey 20 ) @2%) (2.7 coe 2" () 2% L.l 2¥)

- aan » n n+) 2n .,
(v) (Vzv s e 20, z) (zv ces Z <u) z, ooz iff

» n n+; 20
L] <u " aan
z, z, oz ) z, z, z)



he property (iil) explains that in every neighbourhood, defined
through -, of a state of the energymeter, are states with dyadic
energy values. This property enables us to define for every state

z, 8 value Uv ('v)= the meter can be "calibrated”.

We can explain that (iii) and (iv) are independent by similar arguments
as we used to demonstrate the independence of the related properties
(ii) and (iii) of the entropymeter. The properties (i), (iv) and

(v) form the conditions under which the "metrization theorem for energy"

(theorem 14) obtains.

A

The gquestion arises, whether the energymeter is a highly artificial
device for solving mathematical difficulties of the formal theory,

or a system which has also an acceptable physical interpretation.

We will demonstrate that the energymeter can be interpreted as

& calorimeter. The crucial property which leads to this interpretation
is JP(Zv) S Z((zv). This property implies that a change in energy,
without a change in entropy, is impossible: the system cannot do work,
reversibly, in adiabatic isolation, or the internal emergy is only

a function of the eatropy. A system with a one dimensional phase space
with U or S5 as the only independent coordinate fulfills this
condition. A calorimeter is essentially such a system: the internal

energy is a unique independent variable of the system, the calorimeter

is not able to do work.
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Measuring energy differences with the energy meter is thus essentially
performing calorimetric measurements. The construction of the
energy function Uv(zv) for the calorimeter is closely related to

existing methods of calibrating these meters.

A remarkable trait of this interpretation is that the concept of
"heat" in the sophisticated form of "internal energy" regains such

a central place in thermodynamics. This is, however, understandable
if we realise that we aim to construct a thermodynamics independent
of mechanics.

As a consequence of definition 7 or definition 2, there exists
a similarity mapping from (C/, +) onto ({, <u)), where the
equivalence classes of equal internal energy of the family U
are ordered through the relation <u), according to the

ordering <u) of the states contained in them.

Thus (D’; e (m <u)). From this and (Da, +) £ (R?, <) it

follows that (ﬂ. <u)) = (R”, <u)). It further follows from
definition 2 that a neighbourhood /7ir(zv) is also a neighbourhood
,1ﬁtzv), where the latter is defined as a set'{zvfz zv' <u) zv¥

<u) 2/} containing z,. This allows us to rewrite property
(iii) of the energy meter and to give an equivalent formulation

of definition 16 as follows:



&zﬁ

3.16% Def. An energy meter zv is a system Zv € znuch that

@ Ya) - U
ai) d, «n =@, 9
({ii) (Vz)) (VA (2)) (Fz, @), 2, @7))

[‘v (d')u. z, (cl"")u € /f: (";v) and z, (d')lll <u) z, <u) ‘v“”)u]

where a neighbourhood /{{(z y) is defined as a set

{zv+= zv' <y) =v+ <u) zv“} containing z,.

(iv) (\'z‘r R zvn) (Jz*) (zv' aise zvn (u) zv* oo zv*)

2 ("zv" vees "vm' z) (‘v‘ i ‘vu <u) zvnh “ee =vzn iff

+
zv see :vn z <u) zvn X A ‘:n .)

A comparison between the metrisation axioms for entropy, the
definition of the entropy function Sy (zg), and of the entropy
meter Zg at one side and the metrization theorem, the definition
of the energy function Uv(:v). and of the energy meter Z_ at the
other side, shows immediately the close formal resemblance.

This allows the following theorem:

3.17 Th. For the compositions of identical energy meters z':

z,(r1) z,(ry) ...z (r) Su) z (r,") z,(r;7) ... 2z (x ")

-

k T

=ME <

n
1£F b r, =
1

Proof:

Replace in the proofs of theorems 18 and 19 of chapter 2 => by <u),
the indices 0" and s by the indices v and u, and S by U. O
definition of an emergy function U, (z;) of an arbitrary system

Z; € & does not give special difficulties:
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3.18 Def. A function U; (zi). z, €2; € {;L is constructed as follows:
Choose an energymeter Z  and a state zi' € Z;

- - - -
: - - - -
Ui (zi ) S0 ; we write z; z:l(c:)u

Ui (zi) = r iff z; zv(o)“ (w) zi(c’)u z, (r)u

3.19 Def. The system Zi is U measurable with the energymeter zv,

if for every z, € Zi Ui(:i) = r (a real number).

3.20 Ax. There exists an energymeter Zv E'jsuch that all systems

Zi € GI' are U measurable with the energymeter Zv-

The proof of the next theorem, which states that the set of
functions Ui.(zi.) is a set of extensive energy functions is completely

similar to the proof of the extensivity of Si(zi)=

3.21 Th. For all zi 5:4:

n n
zy eeer z (W) 2,7 o0z 7 Aff { v (z) = % U, (2.7,
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CHAPTER 4  PHASE SPACE, FUNDAMENTAL EQUATIONS

This chapter introduces the concept of phase space. It will
appear in chapter 5 that the phase space [Ui' s e x‘lu'.' ...] i ke “i'
with the internal energy Ui and the deformation coordinates X . as
independent variables, plays an important role. A second important
phase space is [Si. eee X0y wiely R & N;. Phase spaces are R" spaces,
where n is the number of independent variables defining the system zi.
I do not presuppose that every point of a phase space represents a state
z; € Zi- Conversely, however, every state z; € zi is represented by
a unique point of phase space. In other words: zi is represented
by the "occupied” points of a phase space. In the first paragraph
of this chapter we will devise a terminology which enables us to
describe different ways of "occupation" of phase space.

For a system zi ex with phase space [Ui' iy xki, see]s k € Ni,
an eatropy function Si(zi), which can be written as S(zi) -

f(Ui(xi), dinoy xki(xi)- «s+) is defined. This notation stresses
that we are concerned with a set theoretical function with domain
z, € zi. still without amalytical properties. In traditional
thermodynamics the function si(Ui' coey xki’ «++) defined for all
points of the phase space [Ui' Al x'ki’ ...:| k€ Ni’ plays an
important role, and generally it is tacitly assumed that this function
is differentiable. 1In the second paragraph I will investigate which
conditions have to be fulfilled to guarantee the existence of two-sided
derivatives 9S; and 351 » keN, at all “occupied” points

" i

of phase space. These conditions are of two different kinds. The
first kind (23 i,ii) formultes the requirements with respect to the
occupation of the phase space [Ui, sy x‘ki' ...], ke Ni' The second
kind (23.iii,iv) contains continuity assumptions for the function
Si(zi) - f(Ui(zi), e X.ki(:i), v«2)s This set of sufficient
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conditions can be investigated from a physical point of view. It appears
then that they are physically indistinguishable from stronger conditions
(27. i,ii), the latter being much simpler and allowing the development

of a more transparent thermodynamic theory.

A second important function is Ui(zi) = gCSi(zi), A xki(zi), s5a)y z;, €Z;.

This fundion and Si(zi) = fCUi(zi), e xki(zi)' «s+), are called the
fundamental functions.

An investigation of the differentiability conditions of the intermal
energy function along lines similar to the treatment of the fundamental

entropy function leads to similar results (Th. 28).

The fundamental entropy and internal energy functions are closely related.
An analysis of their relationships is, however, not undertaken in this

axiomatization.

Phase Space, Occupation of phase space

4.1 Def. An extensive phase space of the system Zi is a subset of the

set of extensive variables {Ui, S;» Xpgo «e.} k € N (N being
the set of indices indicating the different kinds of
deformation coordinates), such that with every set of values
for the variables of this subset there corresponds at most
one state Z; .

The following notation will be used for phase spaces:
[Ui.' vers Kg il 5 B eN; € N; [Si.' ooy Xgs ooe] 5 k€ NGN;

E---’ X.ki, no-] ’ k € Ni. - N; [UJ etc.

4.2 Def. Systems with phase spaces [ﬁi, cees Koo -.;] and
[ﬁi, seny xki’ ..J s k€ Ni are called "simple". This term
has, however, so many different meanings in different presentations
of thermodynamics that the use of it can cause confusion. The
property will therefore be mentioned explicitly in the following

(e.g. in the extremal principles).

We assume that the systems Z; ¢ ﬁﬁa are"simple'.
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§.. Ax. The systems Zi E)fg have & phase space [hi' sasy xki' ..J
k e Nic: N

The converse is not true. To show this we consider the so-called
"mechanical systems"”. An important characteristic of these systems

is that they do not have a "temperature" or more formally they are

not contained ins‘l’-’a. An "internal energy function" can, however, be
defined for mechanical systems, which function can be identified

with the "purely mechanical" potential energy function. The

mechanical energy which is disengaged in a transition from a state

of higher potential energy to a state of lower potential energy can

be dissipated in a calorimeter (energymeter) and thus measured as

a change in internal energy of the mechanical system. An identification

.,-..].EEH lllﬂ

of the set of systems with phase space [Si, cong xk;

the ut:fé is perhaps possible.

i'

A An immediate consequence of the definitions of "phase space"
and "simple system" is:

4.4 Th. The states z, of a simple system can be uniquely represented
by points (vectors) r; in a phase space R, = Ry; Xeoo
Roene TG Ni) and by points (vectors) E‘i in a phase

lplc. R'i = ns HeoeX ka X sene (k E Na)o
~ i i- 1

Only these two preferred phase spaces will be writtem in the
shortened notation Ei and lj"i respectively; other phase spaces
will be written as cartesian products of the chosen variables.

The distinction between the points of phase space and the
®occupied" points can be expressed by the notation
5 for point, and fitzi) for point 5 occupied by state Zg.






The shaded parts represent existing states Zg-
The bold parts of line £ andm represent the
subsets Z%(zi) and Zg(zi).

The shaded part of the rectangular around Z4
represents a neighbourhood Zi)((zi).

The following differences exist between the
symbols used in this thesis and those used in
my article (1) :

this thesis (1) this thesis (1)
R N(z,) BiN(z,) RAN( 2, ) Riw(z,)
RN (z,) Ry(2,) ReN(zy)  BipG(z,)

Z%){(zi) and Z'i)(U(zi) are not defined identically.

figure 4.1




The components of the vector t; can be written as

Ui(fi)’ xki(fi) etc, which has to be distinguished from
Ui(zi). xki(zi) etc, the values of Us» xki' etc, for
state z;. It is obvious that for Ei(zi) : ui(Ei) = Ui(zi)

Xy (rg) = X 5(25) ete.

To explain the properties of the phase spaces of the systems
of thermodynamics we introduce a series of terms by formal
definitions and clarify their meaning with the help of
figure 1, which illustrates different concepts for the
simple case of a two dimensional phase space RU X Rx.

In the following I shall often restrict the discussion to
the case of the phase spaces R, * Rx and RSK EX' This
will simplify the notation considerably and the extension
to the n dimensional case will not present essential
difficulties.

A neighbourhood in Ei of state z; is defined as a "box"
around Ei(zi):

4.5 Def. A neighbourhood in Ei of state z; ¢ Ei’?f;i) = R/ﬁf;i) =

{rg 1 050" <03 (xg) <0 (™) & U3 (5 7) < U(zp) < U300
& X (1) <X () <X (™) & X057 <X 0e) < X 0™

k € Ni} or abbreviated

i 8 LT € P .“' "< r.(z.) < =R
{51 i < anTer(z) <y 1B

The straight line in Ri through ri(zi). parallel to the

U,~-axes, is called the U subspace in R, of z;:
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4.6 Def. The U subspace in Ei = RUi x in is
Ry(z) = {r; = X, (r;) = X;(z)).
1f Ei = RUi - AL kai 4es 3 KB Ni' then we write
Ruxk, keN; (2) 3 {r; : X (r,) =X .(z;), all k € N, }.

The set of states zi? which occupy points of the U subspace

in Bi of z; is called the U subset in Ei of z; .

4.7 Def. The U subset of Zi in Ei = RUi X in is:

An open line element containing zg (or more precise Ei(zi))

of the U subspace R%(zi). or otherwise stated the intersection
of the line R%(zi) and a "box" around Zy without its walls,
is called an U neighbourhood in Ei = RUix ‘in of z, ¢

4.8 ﬁéf. An U neighbourhood in R. = x of z:. 18
£ 1 RUi in 1
X S X
Rufﬂf;i) = RA(zp) NRE(2)).

The set of states zi+, which occupy points between two
occupied points of the line R%(zi) on either side of z;,

is called an U neighbourhood in R, = R"i x Rx
i

4.9 Def. An U neighbourhood in Zi with phase space ﬁi - Rui* in

of state zZ;.

. is:
of z; s

" T
28/ (2) = (a7 3 U (2,") < Ug(g; ) < U (2,") &
Ui(zi') < Ui(zi) < Ui(zi") &

'i' - - x
2;' 2,7, 2,7 € 2;(z)}



4.10 Def.,

4.11 Def.

In 2 similay vay ve define for phase spaces R, = RU- x in

= L
andgi = Si’ in =

U
R e o Re(z) o RSz, 240z, (2,
U
Rx/{/(,zi) .Ri (2;), Z;Jc (z;), Z,SI (z;) ete.

The next series of concepts describes possible ways of
occupation of the phase spaces. Before we introduce
these we explain different topologies.

The topology (R, Z)) is the interval topology for the

set of reals R, wherel is an open interval of reals

st e gg’ )

This definition can be extended to the Ry space without

difficulties.

The states - of a system with a one dimensional phase
space R are ordered through the values r(z) € R
and this ordering gives the possibility of defining
another topology, denoted by (Z,fl().

The topology (z,fI<)is the interval topology for the

one dimensional set of states Z, where“l is an open
interval of states {z : r(z”) < r(z) < r(z”")}; the
boundaries of these intervals are thus states. The
extension of the definition of this topology to systems
with more dimensional phase spaces presents certain
difficulties, which will be avoided by considering
exclusively one dimensional subsets of more dimensional

systems Z.



4.12 Def.

4.13 Def.

4.14 Def.

50.

The most complete form of "occupation' of phase space is
described as global connectedness in the interval topology

(R, 2)) :

The set Zﬁ(z) is globally connected in the interval topology
R,"2,) iff {u? : 2T ¢ Z%(z)} = RT, where RT is an

interval of reals.

Thus the occupied points of the line Rg(z) form a connected

line element.

The set Z with phase space Eh, ﬁ] is globally connected
in the topology (RZ,fI() iff

(Vz) [{u(z"f) :z Tg zﬁ(z)} - RT']

(Vz) [X(z+) : 20 € Zg(z)} = Rﬂ
This sk fod Lo 421 L2 o b,

A weaker form of "occupation" is "local connectedness
in the interval topology (R,:I<)" where we require that

every state has a neighbourhood which is globally connected:

The set Zﬁ(z) is locally connected in the topology
(R, ) iff Vz) @ zy472) [(uzh : z € 25 Mz} = R ]

The extension of the definition to the set Z is similar
to the extension of definition 12 to definition 13.

F. i - U;; - E I z .I] ]
Eh—%}T—&eea4+y~eeanee£ed—*n—4ﬁyiiz}.

Still weaker than "local connectedness in (R, T )" is

"local connectedness in (Z'tlc)" which is defined as follows:
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&.14 Def. The set Z;(z) is locally comnected inthe topology
r

(Zy(2), 8 ites
(Vz) (VzﬁfV(-z)) Bs% 3" [ 2™ 2 Zﬁz{/(z) &
U(z") < u(z) < uz""]

This means that there exist no "next" occupied points on
either side of z on the line Ru(z) A next state, say z*!
implies that ZU(z) can be d1v1ded in two subsets {z - U(zT)
< U(z)} and {zTT : U(z ) 2 U(z )} which are both closed
in (Zg(z).tl‘), and Zx(z) is thus disconnected at z.

The next concept to describe situations in which for
every pair of states z~ and z” “of the same U subset there
exists a state z, such that U(z") + U(z"") = 2u(z).

If in an interval of zx(z). containing z” and z”°, this
U

property holds, then the energy values U(z") + d(U(z"")= U(z"")
for all dyadics 0 £ d £ 1 are occupied. We will say that

the interval of the subspace RE(:) is "dyadically occupied".
Again we distinguish the situation in which the property
obtains for all states of the subsets Zﬁ(z) ete. and that

in which the property obtains for a neighbourhood of every
state z.

4.16 Def. The subspace Ry(z) is "globally dyadically occupied"” iff:

(Vz”, 2°°) @2""") [2°, 7%, 2" ¢ Zﬁ(z) & U(z7) + U(z"7) = 20(z"")]

4,17 Def, The subspace Rﬁ(z) is "locally dyadically occupied" iff:

wz") [if 2" € Zh(z) then (3 ZhAGT))
Ve =) @27 (27, 277, 277 e B AL 8 UG ¢ U™ -
uG"")]
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We finish this paragraph with the proof of a useful theorem:

4.18 Th. If zﬁ(z) is locally connected in (zlﬁ(ﬂ' 7, and Rﬁ(z) is
locally dyadically occupied, then for all z € Zg(z). there
exists a neighbourhood zﬁ /ﬁf; ) such that {U(z*) : z* ¢ zg (z+)}
is dense in an interval of reals R* in the interval topology (R,Cf;)

(or : {u(z*) : zx € zg(z)} is "locally dense" in (R,Cf;))

Proof:
Consider a neighbourhood zgzﬁf;) in (Zﬁ(z),i?é) for which the
following holds:

iEx ;2 € Zgﬁﬁf;) then (32"77) {277 " ¢ Zg(z) and
U(z") +U"") = 2U0(z"""). Suppose U(z") < U(z) < U(z"");

the possibility of this supposition is guaranteed by the supposed
local connectedness of Zﬁ(z).

Consider the interval of Reals R+ = {r+ : U(27) < r* <uz"M)}.
All energy values U(z”) + d {U(z"") - U(z")}, for all dyadics
0 <d <1 are occupied. All reals r* € R+ can be written as
rf =0(z") + x@UE"") - (U(z")}, 0 < r <1, and every real

0 < r <1 can be defined as the least upper bound of a lower
cut of the dyadics {d : 0 < d < 1}. Thus the set {U(z+) -
U(z”) < U(z+) < u(z"")} is dense in the interval Rf. =3

Remarks: The distinction between local connectedness in
(zﬁ(z), :-7;) and local connectedness in (R, .‘7() is of a purely
mathematical kind and has no physical significance at all.
Because every physical measurement contains an uncertainty, the
resulting values can never be given as numbers, but are always
more or less narrow intervals. The weakest physically
controllable assumption about the occupation of phase space

is thus local connectedness in (R, <). The same reason makes

it impossible to distinguish physically between a dense set and



ites closure. This situation is of importance in the choice of
the axioms for thermodynamics : it is mrfectly reasonable not
to choose the mathematically weakest assumptions, but to be
content with the physically weakest assumptions, which lead to
the fundamental thermodynamic equations. This will make it
possible as well to avoid the complications of mathematical
refinements. My policy will, however, be to try to explain
the mathematically weakest assumptions, which we need, and to
show afterwards, that the theory can be simplified by using

a more physical approach.

A The functions S(U, seny xki .co) and U(S, esny xk' o..)o
Differentiability

The entropy S i is a set theoretical function defined on the
domain Z;. For a system with phase space [Ui. ooy Koo -
k € N;, we can write this function as Si(zi) - f(“i(li), S s
xu(zi), «es)+ In this notation the domain of definition is
clearly the set of occupied points of phase space.

The function Si(l.li, vees Xos «+s) is considered as distinct from
the above function £, in this sense that the domain of definition
is the phase space [Ui’ saey xki' ], k € N:L' In view of

this distinction, we have to be very careful in the use of the
concept of "continuity" : the term “"continuous" will never be used
without a specification of the topology concerned. Continuity
has the usual meaning:

4.19 Def. A function £f: X Y is (X, :71). (Y, :72) continuous iff the
inverse image £ 1(G) of every open set G in (Y, b’z) is an open
set in (X, Ul), or in other words if for every G e.‘Jz, £ 1) e 31.
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4.20 Def. A function f: X+ Y is (x,:71), (Y,f?z) continuous at x g X

if, for all open sets H in (x,:yl), containing x:
the inverse image of every open set G in (Y,Zfz) containing
y = f(x), contains an open set H1 in (x,tfl) which is contained

in H.

(or formally (VH,6) (x € H e 37'1 & f(x) € G 8572)

1 1

@) @ c f(6) & Blsffl & B < H) ).

We also need the concept of "smoothness" of a function at

a value:

4.21 Def. A real valued function y = f(x) is smooth at a value x = a
iff for every sequence Xys Ky oees such that 1lim x =a
n+w
the limit: 1lim f(xn) - f(a)

X *a
n

X -
a a

exists and is equal for all sequences.

thre now in a position to explain the conditions which guarantee

the existence of partial derivatives asi
]

BUi
3, au, i
"fx;. and *‘g'tx-k*i at the
Ups X4 Bys Xgq

occupied points ri(zi) of phase space [bi’ ey in

P
and r{ (z;) of phase space [si, vens Xy sl ke N, .

L L 'kENi

4,22 Th. Sufficient conditions for the existence of the derivative
as.

1
avi at every state z; € zi are :

X,
1



For sll zi £ Zi -

(i) zg(zi) is locally connected in (Zz(zi),?’() ;
(ii) Rg(zi) is locally dyadically occupied ;

Gid) s,z h = £, 2t ez, is

duih 2ozt e i), Y, dseeh 2 e ), U
continuous at z; 3

(iv) Si(zif) = f(Ui(zi*), zif € Zg(zi) is smooth at z; -

Proof:

Consider a neighbourhood Zﬁ«f(;) for which conditions (i) amd (ii)
obtain, which implies that {U(z*) : 2" € ngff;)} is dense in an interval
of reals containing U(,) (theorem 18). We distinguish two possibilities:

(1) there exists a smallest intervalu¥8(z*) : zt ¢ Zﬁvéf;)} containing
8¢z) The map of this interval into {U(zT) : 2zt ¢ z§4¥f;)} contains
an interval containing U(z) and for all states z* in this interval

S(z‘) = S(z). The function f is thus in a neighbourhood z%.d?;ts)

represented by a set of points in RU x Rx, which determine a unique

curve (a straight line), because of the denseness of {U(z*) : z” ¢ zgzéf;)}

in an interval of reals R*.

-

(2) there does not exist a smallest interval ;;’{S(:f) - z* € z;Jﬁ{;)}
containing S(z). This implies the existence of an infinite number
of nested intervals containing S(z), in {s(z?) : 2zt ¢ Zﬁ.fﬂf;)},
which map into an infinite number of nested intervals containing
U(z) in {v(zh) : 2t e zgxf{;)]. If this latter nest of intervals
approximates an interval of {U(z) : zt ¢ 25/1(;3} then for this
interval all the S values are equal to S(z): again we arrive at

the existence of a horizontal S(U) curve-piece through 2.
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If this nest of intervals approximates U(z), then in a neighbourhood
zg fiz) the function £ is represented by a set of points

in Ry X Rg which determine a unique curve piece which may be
discontinuous or may have a kink at U(z). Such discontinuities

and kinks are, however, excluded by condition (¢v).

The existence of a uniquely determined, curve piece through
z in Ru X RS' without discontinuities or kinks at z, implies

3U]x =)
It is naturally permissible to replace the conditions (i) - (iv)

the existence of the two-sided derivative [BS

through stronger conditions. Such a set is the following:

4.24 Th. Sufficient conditions for the existence of the derivative

L]

EEE at eve state z. € Z are:
30 ¥y § & & .
X

For all z; € zi:
(1) Zﬁ(zi) is locally connected in (R,Zf<)
(i1)  s;(zh) = £ (zh, 2zt zﬁ(zi), is
(R,27<), (R,i?k) continuous (or otherwise stated:
Si(ui) is continuous at every Ui(zif) 3 zi* € Zz(zi))
(i) 8,021 = £z, 2, € Z5(z,) is smooth at all z;
(or: Si(Ui) is smooth at every zif £ Zﬁ(zi)-)

Proof:

It will be immediately clear that condition (i) implies the
conditions (i) and (ii) of theorem 23.

In the case of a set Zg(zi) locally cconnected in (R,:7<),

a neighbourhood Rﬁiffzi) is completely occupied: this implies
that for a smooth function Si(zi+) - f(Ui{zi*)) local






convex upwvards
horizontal
convex downwards
maximum

minimum

kink

discontinuity

missing state

T ‘\\\\\

O 0 N & i & W N =

missing interval
of states

|
|
(i) 25(21) is locally connected

(ii) Si(Ui) is continuous

(iii) Si(Ui) is smooth

figure 4.2
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(weh: e e=ph ) wseh: 2t 23 (20}, /) continuity
and local (R,f7;), (R,:f() continuity become identical. Thus 4.23
(i) - (iv) may be replacedby 4.24 (i) - (iii)

The conditions 24 (i), (ii) and (iii) can be illustrated geometrically.
In figure 4 the thick uninterrupted parts of the U axis represent
connected (in (R,:7<)) subsets of Zﬁ(zi), thus occupied intervals of
the one dimensional U space. Interruptions are either unoccupied
single points, or closed unoccupied intervals. Condition (ii):
continuity of S(U)X leaves open possibilities for the S(U)x curve,
listed below. Without condition (ii) the existence of a curve is
not guaranteed at all. Condition (iii) restricts the possible
properties of the S(U)x curve. Discontinuities and kinks at
occupied points are excluded; however, at "missing states' they
remain possible. The introduction of the maximum entropy principle
in the next chapter will imply a further restriction for the shape
of the S(U)x curve.

Remark: The distinctions between the weaker conditions 23 (i) - (iv)
and the stronger conditioms 24 (i) - (iii) for differentiability are of

a purely mathematical nature. Physically they are indistinguishable and
it is therefore justified to choose the simpler and geometrically more

transparent conditions 24 (i) - (iii), when differentiability is required.

- —

4
To simplify the terminology in the next chapter we will introduce a few

"summarising’’ concepts:

4.25 Def. The phase space [ﬁi, waiag xki’ S :”F £ Ni is locally

connected occupied in (éfz;;) at z; (or s(zi)) iff

zﬁﬁia k € Nj (zi) is locally connected in (R,f7<) at z, and
i
zUi, %24 2 ¢ Nj-k (zi) is locally connected in (R,:7<) at z;

Xy

for all k € N;.
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Zhe phase space [Ui, »iawy x‘ki' ], k € Ni is locally comnected
occupied in (Rn.?/<) at all z; E zi means that for every state z;
exist a neighbourhood Ei/ﬁai) in phase space which is completely

occupied. This is a consequence from the foregoing definition.

5 Y ¢
4.26 Def. The function Si(zi ) = fi’_tli(zi‘l'!. &0 p xki(zif), .:)
is (Rn,ff(), (R,‘)Q) continuous and smooth at z, iff:

i

? * + .
%&i)-%wﬁﬁ),ziczﬁhkﬁnﬂﬁ)h
(R, 7<). (R, Uc) - continuous and smooth at z,

5;(2,") = L0t d om0 zgii Xed, b e Nik (z) o

(R, 7;), (R,Z) continuous and smooth at z; for all k ¢ N:I.'

Similar definitions can be formulated for the phase space
[-Si’ ¥ x'ki’ :], ke Ni and for the function

Ui(zi+) - g(Si(z;.), by xki(zi)' «es). We arrive

thus to the final "summarising" results:

4.27 Th. Sufficient conditions for the existence of derivatives
i 8y for all k,
aui i ax‘ki X LeN
Xei, kg N Uir Xgy0 i~k

at every state z; of a system Zi with phase space
E’i' voes Xugy cec], k€ N,, are

(i) the phase space Eli, e Koo cae) g We N, is locally

connected in MFMAGe) (R®, 7<) at all z, € Zi

(ii) S.(z.) = f(ui(zi*), o xki(=i+), oes) ds

i1 1

(&, s (R, ;;”;) continuous and smooth at all z; € Zi.



4.28 Th.
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Sufficient conditions for the existence of derivatives

- for all k, at every
i x:l?.:'.' L e Ni—k

state z; of a system 2, with phase space I_—_Si, ooy %oy s
k e Ni are:

(i) the phase space [si, N S vl B & N;, is locally
connected occupied in (R®, Sf() at all z; € zi.

(i1) Ug(z;) = g(S;(2.), «oo) X (20), +.0) is gl

(R, 7<) continuous and smooth at all z3 € Zi.
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CHAPTER 5: EXTREMAL PRINCIPLES, ABSOLUTE TEMPERATURE, ABSOLUTE FORCES

The aim of this chapter is to show the central part which the Gibbs
maximum entropy principle and the "mechanical" minimum internal energy
principle can play in the development of thermodynamics.

In the first paragraph a precise set theoretical statement of the above
principles will be given, which avoids the ambiguities of traditional

presentations.
The "traditional" maximum entropy principle reads as follows:

In an equilibrium state the entropy of a system is maximal compared with
the entropy of neighbouring (non-equilibrium) states, which are obtained

by allowed variations under certain constraints: GSU xk < o.
3 *eew [ .

There exists in traditional thermodynamics no counterpart for the second

principle. The Cibbs minimum emergy principle, &Ug X, > o0,
. L .

cannot be considered as such because it restricts itself to thermally
homogeneous equilibrium states. Different extremal principles are
explained without investigating in their precise relatiomships. The
second paragraph considers the conditions which enable us to demonstrate
that the hyper surface Si(ui’ s in, «++) is convex upwards at every
“occupied' point of the phase space [Ui, ceen g ...]. ke Ni of a
system Zj» 88 & consequence of the maximum entropy principle, and that the
hyper surface Ui(si' e xki’ ««s) is convex downwards at every z;, as
a consequence of the "mechanical" minimum energy principle. Again we
find sets of sufficient conditions (in theorems 5, 6 and 7) which are
“physically indistinguishable" from stromger but much simpler conditions
(in theorems 8 and 9). The results of the second paragraph lead to the
most important consequences of the extremal principles, namely that:

2324 £ Ce (i.e. z and z; are in thermal equilibrium) iff
F}Si(z.l} 08.(z.)

- = g

- 2
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z; zj € C¢k (1.8.; z; and zj are in kM force equilibrium) iff

BUi(zi) . (z.)

X I
An absolute temperature function (or better a negative ;eciprbcal
absolute temperature function) N(zi) s - %(zi) = Siézi)
and absolute generalised force functions

P = ;;f;fil can now be defined.
i

These results can be obtained if certain conditions are imposed on
the systems concerned. These conditions can again be chosen in
different ways. In theorem 10 I list a weak set of conditions,
in theorems 11 and 12 a strengthened set which are identical with
the strong version used for the proof of the convexity statements.
The two sets are again physically indistinguishable.

Finally, we investigate the conditions which lead to the fundamental

equation T d 8, =d Uy = i Rdx, .
ENi



§1. Extremal principles

The two principles which form the core of this chapter are the
Gibbs maximal entropy principle and the 'mechanical" minimum
energy principle.

5.1 Ax. Maximum entropy principle

For systems Zi. Zj € 29.

Z. with phase space R, = RU_ Xeus . X sees P EN.CN
Zj wvith phase space gj < Ruj Xess By . Xeuey Q€ NJ.CN

(where N is a set of integers indicating the different kinds
of deformation coordinnt:ea):zi ""j E Geﬂ sadl)) C%n siies
k ek cuif\ Ny, iff
there exists a neighbourhood _gij /V(.zi zj) inR. X Ej space.
and there exists a set of paired deformation coordinates
X i xkj, k eKCN, n ij agsociated with the comnections C, ,
such that, for every z, zj"' contained in the neighbourhood
Ris /‘/(‘1 z:)»
if Uiczi } L Uj(’j ) Ui(zi> + Uj(zj)'

t ;- P
and xki(zi ) + x.kj(zj ) xki(si) - xkj(zj) for all k € K,
and xzi(zi+) - xzi(zi), for 311 E E Ni - K’

o b
and x\nj(‘i ) ij(zj), for allm € NJ. s

then 5, (1) + 8,(2.h) <5, ¢+ 5,6,



5.2 Ax.

- e
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Minimum energy principle
p s
¢k

Zi with phase space Ei = RSi X...X Rxpi Xeee 3 P E Ni(_'_ N,
x.a-x " xn-o q E N.C N:
RX‘IJ ' 1

M
For systems Zi. Zj Er ek

Z. with phase space R, = R

; P Pace B~ By,
S K & sondl) € Nses REE ¥, CYR,; 188
1] dx i ]

- - -
there exists a neighbourhood R:'.j /z/(zizj) in RS X Ej space,
and there exist sets of paired deformation coordinates
xki, x'kj’ k e K CN:'. N Nj :ssoc:ated with the connections cf."
such that, for every z4 zj contained in the neighbourhood

Eij M(zizj) ’

k!

. . , T
if Si(zi ) = Si(zi) and Sj(zj ) = Sj(zj),
and xki(zi+) + ij(zj?) = in(zi) + ij(zj), for all k € K
and Kgi(z;) - Xﬁ(zi) for all £ € N; K,
% =¥ .. E N.-
and Xnu.(zj ) KmJ{zJ) for all m NJ K,

then U,(z;") + uj(zj*) > Uy (a)) + U, ().

The minimum energy principle has to be distinguished from the

"Gibbs minimum energy principle” which says that an equilibrium

state zizj of two systems which are thermally and force comnected
is a state of minimum internal energy compared with neighbouring (non-)

equilibrium states, under certain constraints, or more precisely:

Gibbs minimum energy principle

For fystems Zi, Zj elzeﬂ;!ék

Zi with phase space §i-RUi""'x RXpi x...,peﬂi CN
Z. with phase space R. = L g i Tty N. CN:
j P P L RU_] X xquJ x q¢ i

2525 € cen...ﬁ c¢kr\...., k¢ KCR, CN, iff
there exists a neighbourhood R. x Rj /f/(_zizj), and

there exist pairs of deformation coordinates xki’xkj’ ke K Clliﬂ Nj,



5.4 Th.

ssgociated with the commections cd:k’ such that

1-

t ‘ A i
for every z; zj contained in R, X Bj Mzizj).

if 50" 4 5,0.N =550 4556

and xki(zi-r) + xkj (zj.r) = xki(zi) + xkj (zj) for all k ¢ K
and xu(z;) - xli(zi)’ for all £ € N, -K

and xqi(zj?) = ij(zj) for all m € Nj-!{,

then Ui(zi*) + Uj (Zj.r) > Ui(zi) G Uj (zj)

-

The "mechanical" minimum energy principle applies in the above
formulation to systems for which an entropy function is defined.

It may be that this entropy function Si is trivial in the sense

that all states are reversibly adiabatically accessible and

thus all states z; € zi have the same entropy.

Let us call such systems "purely mechanical" and collect these
systems in a set ZH .

For such systems the minimum energy principle reduced to the following
statement:

M n

For systems Zi, Zj E K ek xtbk ZH

Z; wvith phase space Ei = LL.WX Rxpi X.oop E N, CN
Z, vith phase space R, = ...X X....,q e N, CN:
f P yace B, qu »q € Ny

for every zizj e C¢k oo k€K CNiﬂ Nj’

there exists a neighbourhood Rij ){'(zizj) in Ri X Rj space,

and there exist sets of paired deformation coordinates

Xeis x'kj' keKCN, N Nj’ associated with the connections C
such that for every zi“' zj'f contained in the neighbourhood
R. )( (zizj) ,

~1j

¢k’
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if in(zi?) + xkj(ij) = xki(zi) + xkj(zj)’
™ e ¥ -

and xii(zi ) h&i(zi) for all L € Hi K,

and xmj(ij) = xmj(zj) for all m € Nj - K,

then Ui(zif) + Uj(zjf) > Ui(zi) + Uj(zj).

It will be clear that this theorem can be interpreted as
the minimum energy principle of mechanics. It is thus

a special case of the more general minimum energy principle
(ax.2). This is of interest for an investigation of the

relationships of thermodynamics and mechanics.

It is not my intention to give here an analysis of these
relationships, or of the inter-relations of the four principles.

formulated above. Only the first two will be used, and these are

independent in the framework of this axiomatisation.
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Convexity
1 shall now develop the main consequences of the maximum entropy
and minimum energy principles. I give the theorems in their
simplest form to avoid complicated notations:
5.5 Th. For a system Z EZB, with phase space [U, X] and such that the
conditions 4.23 i-iv hold:
the curve !"a(l])x describing uniquely the function

+

S(z*) - E(U(:'r)), z € Z:(z). is convex upwards

at every occupied point U(z).

Proof:

We have already shown (4.18, 4.23) that the conditions
23, i-iv imply that for all z € Z a neighbourhood Z:)ﬁl) is
dense in a neighbourhood n:?((z) , and that the occupied points of
the latter form the domain of a function which is represented as
a subset of a unique curve $(U) which is continuous and smooth
at every U(z). We say that "the curve S(U) describe& uniquely
the function S(z?) = f (D(z‘r}). R Z:(z)“. There exists thus
a neighbourhood R: N, '(z) < R: )((z) such that the S(U) curve
in this neighbourhood is continuous and smooth at all points of
U space. The convexity upvards of this curve at =z follows

immediately from the maximum entropy principle . (]
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A similar theorem, and proof, can be obl&ined by carrying out the

substitutions U + X and X + U in the above theorem and proof:

5.6 Th. For a system 2 ez,eﬂz.‘b with phase space [U, x] and such that
conditions 4.23 i-iv (X substituted for U and U for X) hold:
the curve ':":(}I)]'.l describing uniquely the function S(:f) =

£x(z1), 2!

E Z: (z), is convex upwards at every occupied
point U(z).
The minimum energy principle (ax. 5.2) gives the following theorem:
5.7 Th. For a system Z € ZB with phase space [S, x] and such that
conditions 4.23 i-iv (X substituted for U and S for X) hold:
the curve U(X) 4 describing uniquely the function H(z?) -

g(x(zh), =z’

€ z:(z). is convex downwards at every occupied
point X(z).
We may replace the conditions 4.23 i-iv by the stronger conditions
4,27 i-ii which leads to the simplified and physically equally
weak version:
5.8 Th. For a system Z; € X Bn...ﬁz¢kn «esss With phase space
U5 ++ee» X4s «vee] » k € N; and such that:
(i) this phase space is locally connected occupied in (Rn,_’{ o)
at all z; € Zi
(18) 8;(zp) = £ (2;)s -ovy Ky(2p)5 oo0) is BT ), R,
continuous and smooth at all z; € Zi; the hypersurface Si
Si(Ui, vees Xis +++) in the space R; x Rsi is convex upwards

at every occupied point of R;.

Similarly we arrive at:



1
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5.9 Th. For a systemZ; € M b ok’ with phase space [Si’ cees Xy -,
k € N,
i

ke Ni and such that:

(1) this phase space is locally connected occupied in
n
®", J)) at all-z, € Z, ,
- . il
. (ii) U;(2;) = 8(5;(2zp),5 «0ey X 5(2), -20) is (R I)s s &)
continuous and smooth at all z; € zi:

the hyper surface Ui(si' ++s X ;s -) in the space Ei’x Ryz

-
-

is convex downwards at every occupied point of R.

The above two theorems are illustrated in the following figures
(fig. 5.1, 5.2) which give Si’ Ui and Si’ Xk
the space Ei x RS. and an Ui‘ i intersection of the space
1 - L]
R; X RUi (the spaces R, X RSi and 51 X RUi are identicall)

intersections of

[ dd



S
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°2 Absolute temperatrure, absolute forces

Next I shall prove that, under certain conditions, for two
systems Zi and Zj: z; zj t Cg (i.e., the systems are in thermal
equilibrium) iff

3Si(zi) b 35.(:|)

Again we can choose weaker and stronger conditions, making the:
theory more or less complicated. I will prove the theorem
starting from a weak set of conditions, and then show that a
stronger set is mathematically more transparent and convenient
and physically more acceptable. Again also we give the theorem
for the case of systems with 5imple phase spaces to avoid
non-essential complications in notation:

For systems zi. Zj € Z,e. with phase spaces [Ui’ ka] and
[Uj, x,‘jl and such that
(i) = (iv): the conditions 4.23 i - iv
(v): (Vzi. :j) if z; zj B CB then
Xk‘ xg' » - - -
(Vz - J‘f(zi). Z g M(.-.j)) e A Mgt z; ;;j )
ozt e 2 %N, 2" g2 " W,
(2, 2,77 e 2 Nezp) & 272, ez 2 N @) s
Ui(zi’) < Ui(zi) < ui(si”) & uj(zj") < Uj(zj) 4 Uj(zj“)
& B0 ¢ BT = 0T @ Uiss) =

: 98, (z.) 35.(z.)
z, ‘j £ ce iff T . : i |
] Ui xki ] Uj x!j

Pooof:

Conditions i - iv - together with the maximum entropy, primiple - imply
that the function Si(zi) = E(Ui{zi)) for a domain Z' h’(zi) is

déscribed by a continuous and smooth curve i through z; in the plane
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RU x Rg which is convex upwards (see figure 5.3). A similar
conclusion follows for the function Sj(zj) - f(Uj(zj))

95, (z.) 3S8.(z.)
Suppose 2; 2: € C, and —— D elimllen > o
1" R qu 3 U
i 3

k
Condition v guarantees that every neighbourhood z; _)/(zi) and
x . -
zU5 ,pfij) contains states 2 0 2% such that
Ui(zi‘) = Ui(zi) +AU, Uj(zj‘) = Uj(zj) - AU. But the
above supposition implies that there exists in every neighbourhood

of these kinds states zi', zj' such that also: Si(ni') . Sj(zj') =
Si(zi) + A Si + sj(zj) +AS. = Si(zi) * SJ(zj) +

f |
3s.(z,) 3s.(z.)
——de A Y - N S (RS LI A S.(z,) + S.(z.).
it h e |

contradictory to the maximum entropy principle. The only supposition
which can be reconciled with the maximum entropy principle is

98, (z;) 9S. (z.)
z.zlec and A - .—J—-.J—
i73°7e du 3

i Y3
Suppose Bsi(zi) " BS.(z])
3U1 auj

The convexity of the curves i and j has an immediate consequence that
for all states ’i” zj‘ on these erves, such that

Ui(zi’) < Uz, Ui(zi‘) + Uj(zj') =

Ui(zi) + Uj(zj): Si(zi') + si(zi‘) £ Si(zi) + Sj(zj)

and thus, according to the maximum entropy principle, z; 'j € Cy.
Condition v again guarantees the existence of the states zi', z.” in

]
every neighbourhood. 1

Similar conditions, imposed on systems Zi, 2 E:xe N x K lead to:
9S. (z.) 9S.(z.)
g, 5; € Ca/NC,, iff — T O 1S
i =3 ¢ ¢k U U
i

oK, O X4

3
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ard similar conditions for systems z.. Z ez ok give

BUi(zi) au (z
z, ”j (3 C"k iff .
X S,

The theory can again be simplified considerably. The condition

v of theorem 10 is an implication of conditiom 4.27 i. We have already
seen that the conditions 4.23 i - iv, which appear again in theorem 10
are implied by conditions 4.27 i and ii. We can replace the conditions
10 i-v through the conditions 4.27 i, ii

This strengthened set of conditions is again physically not distinguishable
from the five conditions of theorem 10

'y
We arrive thus at the following theorems:

For system zi. Z, elgﬂl s kK E KCN N NJ, (K may be empty, then
Z;s z ez Ys wit.h phase spaces [Ui, o hbid x T ...], PeEN and

[Uj, Ao qu. ...], qE€E N » such that

(i) the phase space [Ui' saoh xpi, +++] is locally connected
occupied in (R™ 5<) at all z; € Zi and the phase space

J

[U., cevs xqj, ], q € “j is locally connected occupied in
&2, 1)) at all z; € 2,

(ii) S, (zi) f (U (z Yo v X i(z Y ann )2
(Rn1  JI TN (n..'1<) continuous, and smooth at all z; € Z;
5;(3) = £5U,(2)) voey Xy5(2)), o) s ®™, ) (n,i‘l )

continuoul and smooth at all zJ € zj :



a zi zj € Ce iff [
3 zi zj € Can cd;k
[351(’1
3

3 yu.

iff

asi(zi)

1

)] ) [asj(z.)]
Ui.xpi,all p €Nk ? Xej Hu

ay
3 : SR ) b | M.
] qi IE T

N.-k
j,x ,all q € i

5.12 Th. For systems Z., z € ZM‘, k €N, n NJ with phase space
(S5 X0 ...], p € N;, and [s., cednkeis susle A€ N such that

(i) the phase space [S., ooy

connected occupied in (R""

phase space [Sj, sty X

qj’

pi' .a

¥

qj

P E Ni is locally

7<) at all z; € Zi, and the

ese]s q € NJ is locally

connected occupied in (RDI, J ) at allz. €2

(ii) Ui(zi) - gi(si('i)’ ses

j i

5 xpi(zi)’ ses) 18 (Rnivﬁ<)o

(R, UL) continuous, and smooth at all z; €24,

=8y (85(2), vy X (), .00) s R, V),

(R, J) continuous, and smooth at all z; € zj :

zi zj € CM‘

iff

r 3

9 X5 J

ha ij L

Si,

S,
j?

X ., all p E:Ni—k

pi

Xy all € N;-k
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Next we introduce the concepts “negative reciprocal absolute

temperature” and “absolute force".

5.13 Def. The "negative reciprocal absolute temperature function" of a system
zi, which fulfils the conditions of 4.27, is defined by:

S S - 0s, (z;)
N(zi) = T(zi) [ i‘i

X3 allp e,

5.14 Def. The "absolute generalised kth potential function" of a system
Z;s which fulfils the conditions of 4.27, is defined by:

9u. (z.)
P (z) = [.gi__l_]
o - LA N X i» all p € Ny

Theorem 5.11 justifies the name "absolute temperature" for the function T(z;)
The value of the partial -derivative - asi(‘i)
9 Uy

is uniquely defined through the temperature equivalence class to which

2 belongs, and this equivalence class consists of all states

Zie 250 B of systems Z., Zj, Zys oo e.zs. This justifies us also

in writing !(zi) in place of Ti(si). In case of the entropy and internal
energy the values Si(zi) and Ui(zi) are dependent on the choice of the
state ;i(o). and zi(o)u, which choice is, until now, considered as
arbitrary. In case of the deformation coordinates X i the situation

is more complicated. If deformation coordinates are defined via
isolations, similar to the entropy and internal energy, then te same
applies,



5.15 Ax.

5.16 Ax.

74,

Every system which fulfils the conditions of theorem 4.27 can formally
be used as an "absolute thermometer'. Weaker conditions will suffice:
only the conditions of differentiability of Si(zi) - f(Ui(zi)) are necessary.

Absolute temperature values for all states of all systems belonging
to ZB can be defined if the following holds:

There exists a set of systems ZT cze for which the conditions 4.27 i,ii
are fulfilled, and such that for all z; € Z; CZB there exists a state

g <L ’
z; [ Zj EZT such that z, zj E Ce, i.e., ,’Ka is "measurable with the

set of absolute thermometers . -

Again the following weaker condition is sufficient: 'there exists

a set of states 2'! = {...zi, cee zj, ««+} such that for all Zp € ZT,

aST(z‘I) exists, and for all z; € zi z-‘Ze there exists a iy such
9 Up
that !i ’T £ ceo

With respect to the absolute potentials Py and "absolute dynamometers"
similar remarks apply, and we make the assumption:

There exists a set of systems zrk cztbk such that £ ok is measurable
with the set of absolute dynammeterlirk.



The last results that we give in this chapter do not require much

comment:

5.17 Th. For systems Zi with phale space Eﬂi, ssny xki. ono]’
k € N; for all states z; such that

(i) the phase space ﬁ]i, P xki’ ..._']. k eNi. is connected

occupied in (‘Rn, {7‘) at z;.
<

1'E7l'k

A T t
(ii) Si(zi ) = f‘:'(l.l:l(:z1 Y5 z; 7.u s 211 k'€ Ri. (‘i) and

Si(zi+) = gk(xki(,i*)), ,i* ¢ zg,xz. all £ ¢ ui-k(:i) and
+ t TP <
U (z;) =g (X ,(2.)), 2, € Zxk L, all 2 € N; k(‘i)
are (R, :y(). (R, Q’c) continuous and smooth at z, )
(a) [351(‘1)] __ (e B0,(sp)
* X4 U, Xg;0 all £ € Nk 3 gy X,
Fktzi)
T(z;)
1
(b) d Si(:i) = thi) d Ui(zi) - . 2 g Fk(zi) d xki(:i)
i T(z
i

where d Si_(zi_) is a differential at z; ete.

Definingd Q =T dS; anddW= E
€

keN

i
that at z,: dQ-dUi-dH.
We use the weak conditions (ii) rather than the stronger conditions

of theorem 4.27 and 4.28 to allow application of the theorem at
states z; Where S;(z;) is maximal (see mext chapter).

Fk d xki it follows
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CHAPTER 6: PROPERTIES AT EXTREME TEMPERATURES, THE THIRD LAW

This chapter is an investigation of the properties of systems in
the domain of infinite absolute temperature, T = + @, or better N = o,
and in the domain of low temperatures, T *+ o, or better N + - ® and
N * + ®, The results are derived for a special class of the systems
already considered in the last chapter, characterised by the extra
properties that their phase space |:Ui, cany xki, ...] » K & Ni’ is
completely occupied in an ni—disional domain, and that the extremal
principles have the strengthened form § S <oand § Uy, a. > o.
U’x Sl’ SJ, x
This implies strict convexity of the S(U)y, S(X)U and U(x)s curves,
which have possible shapes as illustrated in the figures 1, 2 and 3.

The possible shape of Si (Ui, sasp xki. «««) hypersurfaces, in which
we are interested is less obvious. For the simple case of a two-
dimensional phase space [Ui’ In] a geometrical illustration can be
given. The figures 4, 5, 6, 7, show possible shapes, those of
figures 8, 9 and 10 appear to be inconsistent with the extremal
principles. A more formal result is given in theorem 3 which states:

98. 9S.

i i
"y - ) and o -
il Neo, X Wl ¥ao, X

Next wve demonstrate that lower and upper bounds for the Ui and in
variables are an implication of a lower bound of the entropy Sj-
The latter statement, which is introduced as an axiom, leads also

to lim cv = 0o, Positive temperatures are associated with
T—+o

a lower bound for the internal energy, and negative temperatures
with an upper bound for the internal energy. Finally we formulate
the assumptions, which together with the foregoing cover the content
of the traditional formulation of the third law.
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figures 6.1-3 : possible shapes of the S(U)X' S(X)U, and

U( X){; curves,
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figure 6.4 figure 6.5

figure 6.6 figure 6.7

figures 6.4-7 : possible shapes of the S(U,X)-surface in the case
of a phase space [U,X]



figurz 6,10

figure 6.9

figures 6.8-10 : impossible
shapes of the S(U,X)-surface
in the case of a jhase space
U,X . The orientation of
the coordinate axes U and X
is chosen different from
that in the figures 6.4-7.
The shapes are impossible
because the curves £ and m
contradict the minimum
energy principle.
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6.1 Def. We consider the set of systems::E 4 :zé. vith the
following properties:
(i) the systems Z; & :zg have a phase space
[pi’ g xki. ...]. k e Ni' which is globally
connected occupied in (Rni.njl), i.e. the occupied
points fill a connected ni-dimenxional domain of

phase space without frontier.

(ii) the function Si(zi) = f (Ui(zi), - in(zi), L,
is (Rﬂi, 3::),(3, 27<) continuous, and smooth at
all z;.

(iii) a strengthened form of the maximum entropy and
minimum energy principle holds: namely the
unequality signs < and 3 in axioms 5.1, 5.2
are replaced by < and >.

The following theorem follows immediately:

6.2 Th, If Z; 82«’9 then if ZJ.‘: c Z; and if the phase space
EH) e Xii, sials K & Ni is globally connected occupied
by Zi, then zi’ E:Z.; .

The physical interpretation of the se:‘% requires special attention
for the third property. The property (i) is in general tacitly
assumed in physical thermodynamics. It is important to notice that
Es'i' iy in, ..EI is not assumed to be necessarily a phase space
of :6;; this leaves open the possibility of the existence of

!
states of maximum entropy. The factthat the occupied domain

of phase space has no frontier is mathematically very useful.

The intuitive acceptance, in a physical approach of frontiers
for the occupied domain clashes with the mathematical usefulness

of a refutation of a frontier. The existence and



noan-existence of a frontier are, however, not physically distinguishable.

The property (ii) is generally assumed for all physical systems contained

in %

I will not explain how far condition (iii) gxcludes systems contained

indy in its physical interpretation. The condition implies strict

convexity upwards of the hypersurface S(Ui, erers Xgo ..) and thus
3%
< o0, etc., i.e. LS ?ﬁﬂ > o etc.
2 u.? L
i
A

For the systems z. € :% a few interesting properties can be derived:

as (z
For systems z 57’ [-———] = 0,
9 o
%ei /! Nz =o, Xy, all L €Nk
BSi(zi)
and —————
9 1, R &, §e ®
i N(zi) =0, x!.i' all R € i
Proof:
Consider the subspace f_f]i J containing z. ;» OF RU (=.)

i* %i =
(ice. r; € @:l’ xh] iff r; € Eli. sosy X g9 vec)y k€N, and

Xo4 (Ei) - X (:i)). For the states (occupied points) in this subspace
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the strengthened maximum entropy principle and minimum energy principles
hold, and si(ui. xﬁ) is (n", \7;). (R.y;)—cmtinuous and smooth at all
occupied points of the subspace

8S.(z.)
N(gi) =0 i.e. [#_] = g

3Ui

We consider the two possibilities rsi(zi)] 4 o and
9 Xy U

i
9s.(z.)
[_"._...1_] - o
9 .
xk:l. Qi
BSi(z.)
1f =2 ¢ o then (see figure 8) the plane of constant
9 %) v
entropy through z; intersects the surface S imi’ xki) in such a way

that, at z;, a straight line parallel to the Ui axis is a tangent of

the Ui(xki)si curve. One of the parts of this curve which has z; as

its frontier is thus convex upwards and this contradicts the energy

minimum principle.

Thus [3Si(zi)]
@ Xyl u

= ©o. Because at z; also lasi(‘i)] = 9
3 U
i 7 Xy

we are left with two possibilities: Si (si) is an absolute maximum

(see figure 9) or in every neighbourhood of z; in [Ui’ xki are states

zi’ such that Si(zi‘) = Si{zi). i.e. either there exists a meighbourhood



RU; /ffﬂi) of states of equal entropy or the states

{;i‘ : Si(zi ) - Si(:i)} form a curve through z; (see figure 10).
1f si(:i) is an absolute maximum then (see figure 9) below this
state z, there exists a plane of constant si. such that the
intersection of this plane with the sifﬂi. xki) surface is a closed
continuous and smooth “i(xki)si curve, which contradicts again the
convexity downwards everywhere of the ui(xki)si curves in general.
An R*-neighbourhood of states of equal entropy contradicts the
strengthened maximum entropy principle. The only possibility left

is thus that the states of maximum entropy in a neighbourhood of

z; form a curve. And, for the states ‘i* of this curve:

3s. (z
————— = o, .. . it is the isotherm N = 0. Thus,
3 Ui xk

along this isotherm the entropy is constant:

{351(29] [35 (2, )] =
e - g and - ]
3 xki N=o ? u' =9

Next we direct our attention to the domain {zi : N(zi) + -} -

{z; : T(z;) + o} and consider the implication of the following axiom
6.4 Ax. = ri s

For all Zi € fza $ {si('i) Pz e zi} has a lower bound.
Remark: {Si(:i) P E; € zi} cannot have a minimum value because,
if there exists such a value, say r, and Si(zi’) = r then

{oz)) - z; € zﬁ (zi'}} has & minimum contradictory with the



81.

assumption that this is an open interval of reals.

We have, however, to remember that the last assumption was introduced
for reasons of mathematical convenience, and that therefore it is not
permitted to give physical significance to the statement that a state
with minimum entropy does not exist. The formulation of the axiom

leaves both possibilities open.

A
6.5 Th. {Ui(zi) Pz € Zi} has a lower bound in the domain {zi : N(zp) < o}
and an upper bound in the domain {zi : N(zi) > o}

Proof:

For reasons of convenience we restrict the proof to systems with a

two~dimensional phase space E’i’ xi] : Consider a curve Si(tli) , Wwhich

Xy
is continuous, smooth, and convex upwards everywhere.
(a) Suppose the curve has no maximum, and asi > o.
Bui
Choose a state z,. N(:i) < o3 T(zi) >0

U (2;") - U, (z,) = si(ri') Tds;
Si(zi)
+

A greatest lower bound of {Ui(zif) Pz € Zi(zi)} will be

approximated, when Si(zif) approximates the greatest lower

bt X
bound of {Si(zi ) z, € Zu(zi)} .



Say that inf [S(:t) 2 zif € Zﬁ}:i)}- P
P
Then inf {U(sf) s ‘if € zﬁg:i)} - Uitzi) = l Td Si
Si(zi)

si(zi) is finite for all ;5 P is finite; o < T(:i+) < T(zi)
if p < S(zT) < Si(ai) 3 Ui(zi) is finite ; thus

TdS; is fipnite and inf {U(z*) : :* € zﬁﬁzi)} is finite

(b) If the curve Si‘"i)x. has no maximm, and —— < o then
b §

a similar proof leads to:

sup {U(z+) : z+ € Zﬁﬁzi)} is finite

(c) Suppose S.(U.), has a maximum at z,*. Choose a state z, on the
ivi Ii > i

curve such that U(zi‘) < U(:i*) and consider {:Qf : Ui(zi+) < Ui(:i')}.
The proof of case (a) leads again to: inf {U(:T) : Ui(zi+) < Ui(:i’)}
is finite. Similarly we find for a state U ,(z,”") > U(si*) :
sup {U;(z,") ui(zi*) > U, (2,"") is finite. ]
A gimilar theorem can be derived with respect to the variables X in the
Fk

domains ;k + -® ad &= + s+

6.6 Th. lim  |%% = lim cy = o
et m) xy Se
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Proof: Counsider a curve Si.mi)x’
Call the greatest lower bound of Si’ which is assumed to be

approximated if N+ - = (T * 0): Si(min)

S(z) - S(min) =
T(z) T T
ds. du, 1 g4u
J — —_— dT = J T i dT = J cyd in T
o i dT o dT o

Now S(z) - S(min) = finite; thus

T

J Sy d &n T = finite, and this implies that
o

lim €, = © (]
T+o0

The content of the "third law" of thermodynamics is covered by the foregoing,

and the following statement of axiomatic character:

6.7 Ax. lim 'asitz.)
T(zi) + 0 __-L = o
3 U
N(zi) < o d i 5 5
1lim as.
T(zi) + o0 — = o
N(zi) >0 ~axi T
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CHAPTER 7 ¢ A CRITICISM OF G. FALK AND H. JUNG. AXIOMATIKDER

THERMODYNAMIK, Handbuch der Physik Bd. III/2 p.119-175

Berlin, 1959.

Falk and Jung's article in the Handbuch der Physik is closely related
to the axiomatization of the foregoing chapters. The introduction of
connections as equivalence relations and isolations as equivalence or
order relations of different kinds, the definition of extensive
variables entropy and internal energy on the basis of the fundamental
properties of the isolations, the use of extremal principles, which
relate the connection variables and the isolation variables, the
definition of absolute temperature and the derivation of the
fundamental thermodynamic equations are common traits. Much of

the inspiration of my axiomatisation is derived from Falk and Jung's

work.

A critical valuation of Falk and Jung's article meets the difficulty
that the proofs of many theorems, which they establish on the basis

of the given axioms are not demonstrated explicitly or only sketched.
Extra axioms are certainly necessary, and presumably they are omitted
because, measured with the standard of rigour of the article, they are
certainly self-evident. For instance, the ''zerfallen_ge Ebetganga
relationen" are not explicitly endowed with the reflexive property.
This property, added to symmetry and transitivity, makes these
relations identical with eguivalence relations and this certainly

is the intentiom.
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The critical remarks of this chapter are of different kinds.

I will investigate whether the theory is consistent and whether

the given axioms are sufficient and necessary for the purposes
which they serve. Criticism of another kind concerns the

physical relevance of the chosen axioms. Following Falk and Jung's
article we firstly investigate the metrization axioms of Z_iff 5 Y
and secondly the main chapter of the article "B. Die Struktur

der Thermodynamik'. The comments follow the division of this
chapter : I Entropie und Energie, II Die thermodynamischen

Koordinaten.
The Metrization axioms

A comparison between the metrization axioms of Z_iff 5 ¥ and the

metrization axioms for internal energy of our axiomatization forces

itself upon us.
It can be proved that the properties Z_iff 5 vy (i), (ii), (iii), (vii)

and the reflexivity of the energetic isolation implies : zi‘(u) zi" iff

z,” zj(u) :i“ z; (axiom 3.3L) The relation between Falk and Jungs

metrization axioms and the two others in our approach (axiom 3.3 ii, iii)

1., 20 . 1 n
25 z; (u) permutation z; 1.z,

-

if 5" ey el
if 2z, i (u) z;

- -

cee 24 then z; (u) z,
is not completely clear. Possibly a construction of rigorous proofs

of the theorems of Falk and Jung will show that they are tacitly



assumed. If not, then they will follow from the given properties
(i), «.., (viii), because they can be considered as an immediate
consequence of the additive properties of the internal energy
functions U, whose existence is stated to be an implication of the
above properties.

It can further be proved that the properties 5 y (iv), (v) imply:
(\fzi‘ z;”%) 3z (2,7 2,°" (u) 2; 2;). This latter property
is in our axiomatisation restricted to an energymeter, in Falk and
Jung's article it is assumed for all systems. Property 5 y (vi)
implies that all energy values ui(’i) of a system can be written
as dyadics on the basis of a unit energy difference between two
arbitrary chosen states of this system. Property 5 y (iv)
guarantees subsequently that all energy differences between states
of arbitrary systems have dyadic values, compared with the chosen
unit of internal emergy, and this implies that all systems are
"U-measurable” with respect to the first system.

The relationships between Falk and Jungs metrization axioms and ours

being clarified to some extent, a few critical remarks can be made.

Falk and Jungs metrization axioms are certainly too strong for the
purpose for which they are meant. The authors themselves are conscious
of the possibility of restricting certain properties to special systems,
which will be used as energymeters, and that the boundediess of the
domain of emerpgy values requires another weakening of the axioms

(notes p.132 and p.142).
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The property (vi) is physically acceptable, only if we assume that
non-dyadic energy values are indistinguishable from approximating
dyadic energy values. If we wish to maintain the distinguishability,
then the halving procedure does not define energy values of

non-dyadic energy classes. In this case we are forced to have recourse

to refined theories of the type developed in the third chapter.

Die Struktur der Thermodynamik : I Entropie und Energie

Axiom 1, and 2, and the additional supposition, made by Falk and Jung,
that thermodynamic systems possess only one empirical entropy (p.136),
are equivalent to the definition of adiabatic isolations as simple
preorder relations on the set of systems :L(axiam 1.6 in our
approach). The metrization axioms for entropy are, according to Falk
and Jung, contained in Axiom 3a, b, and the additional assumption

that the empirical entropies of the systems 3i are continuous
variables. The latter assumption is equivalent to one of the
properties of the entropymeter in our approach, namely (éf{ *) ~ (R", <).
We may suspect that Axiom 3a, b and the last assumption are too strong
for their purpose. Indeed, Axiom 3b cannot be reconciled with bounded
additive entropy functions and the criticism formulated above applies
again. A comparison between our metrization axioms for entropy and
those of Falk and Jung, makes it apparent that axiom 3c is equivalent
to the part of our axiom 2.9. i

(Vzi , Zg zj) (zi z; + x5 z; iff z;” * 2 )



The other part ... z; zj =z zj iff z,” sz belongs
to those metrization axioms which are already implied in Axiom 3a,
3b and the continuity assumption with respect to the empirical

entropy.

With respect to the other metrization axioms in our approach we again
find it difficult to discover equivalent counterparts. Presumably
remarks similar to those we made in the case of the energetic

isolation hold here also.

In Axiom 4, which gives a final formulation of the properties of
energetic isolations, the problem poses itself why part 4c is included.
Axiom 4a and 4b are isomorphic with 3a and 3b, and because the axioms
2, 3a and 3b (and the continuity of the empirical entropy) imply,
according to Falk and Jung, the metrization axioms for entropy, the
axioms 2, 4a and 4b are expected to supply the metrization axioms

of energy, and thus Axiom 4c. The crux is perhaps that an empirical
energy ie not defined and the continuity assumption for empiriecal
entropy has no counterpart in the energy case. But it is difficult
to believe that after 4a and 4b the complete set of properties 4c

has to be introduced axiomatically.
Axiom 4b can again be rejected as physically irreconciliable with
bounded additive energy functions.

Axiom 5 can be considered as partially superfluous, if extremal

principles for entropy and energy are introduced, as Palk and Jung
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intend to do in Axiom 6.

II Die thermodynamischen Koordinaten

It is necessary to summarise the comtent of this part, because
the argument is, in many places, ambiguous. It is, for instance,
unclear whether conditions in implications are considered as sufficient

or necessary.

A fair account of the main lines of this chapter is perhaps the fo.lowing:

The authors start with a proof of the following theorem (not c:;lici!ly

stated):

If (1) chl) - xnlcl) is a coordinate system of 31 and

Xl(z) voe nz(z) is a coordinate system of 12 s

(1) (2)

xl ses s s s an being mttic Coordinﬂte’

(1) (2) (1) (1 (1)
and (2) X,°7 ¢ x0T, XY, X ), Repy s e

2) (2) )
1 KT e K X T, X

is a coordinate system of [Eil, 32_]. i.e., the system
r

(1)’ (2)

X
n

-

which consists of the systems 31 an 32 in contact

equilibrium with respect to the contact relation (conmnecticn)

associated with the coordinates of the same kind x.(l) and xj{E)
and (3 5, %V Lx D) ana 5, . x,P) are dgiferentiabie

with respect to the variables Xz ,all £ e 1, sesly s L s Nye



(4)

&)

(6)

a5 a5

then (a) 2, z,¢ f3, 2,] iff b - bt |
3 x, D 3 x,
() ifz z,e [3;, 3,] then 45 =o0if
' r
i
d(xjm +xj(2’) =0 and dka =0, k$jand
(2)
dx, =0, L #j.

A similar theorem is generated by replacing S0 S, and S by

“1’ I.lz and U.

Axiom 6 states neit that:
for all thermodynamic systems the condition (1) can be fulfilled (a),

the condition (2) is fulfilled (b) and necessary conditions for

2, 2, € [3,1, 32]1‘ are
i

S(::1 :2) = the maximum of S(xj (1)) under the conditions

D4 x @, 2D @kt i, x, @ @124 constant

U(z1 az) = the minimum of u(xj (1)) under the conditions

xj(l) - xj (2), xk(l) (all k % j), 12(2) (all £ ¥ j) constant (b)

and finally adds (to make the theory consistent) that

The maximum E(xj (1) 2nd the minimm E(Xj (1) i1l be reached at
(1)

the same xj values (b)

(6%) The latter statement is chenged in the case of systems whose energies

have an upper and a lower bound: the maximum E(xj (1)) and the extrema

- 1 o
U(){j() L values (Erganzung).

Y will be reached at the same }i-]
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Finally, a thermal system (thermisches System) is defined as
a system with a coordinate system U, Xy eoe xn and for this kind
of system it is proved that:

380, Xps so0 X))
Satz 10 : : .. = y.r > o
U

Satz 11 : Also 5, X, ... X is a thermodynamic coordinate

system,
The criticism of this chapter is twofold:

The proofs of the theorems which are summarised above appear
not to be sound : the conclusions cannot be proved on the basis

of the given assumptions.

The content of axiom 6 has to be rejected on physical grounds
insofar as the parts (4), (6) and (6*) are concerned.

In the case of assumption (4) it will be sufficient to give

a counter example with a physical system for which ammption (4)

clearly does not hold.

Counter example:

Consider a rigid container consisting of two compartments separated
by a movable adiathermal piston. The compartments are filled with

two quantities of an ideal gas.
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Suppose that in an initial state

=Tz 2, 2,

< Tz P (z)) = P(z,)

T (z)) < T (2)

We will use the following notation: Uj, (z; z,) = Uy(z;) + Uz(zz)

512 (zl :2) = Sl(zl) + Sz(zz) ete.

Now we move the piston quasistatically and under adiabatiec isolation

of the containmer until a state zl' zz' is reached such that
V(zl ) > V(:l)

-

In the state z, z,
Ul(z1 ) = Ul(zl) + A Ul
Aﬂl < o, thus T(zl') < T(zl)
because the gas is ideal
Uz(zz ) = szzz) tA T,

AUZ >0, T(zz') > T(zz)

aslz = o , AS =m0, Asz = g

Then we establish thermal contact between the two compartments until

a state zl" 2, is reached such that T(2,*) 2 T(2)

S

gprzlizis V(z,7) = V(z,7)
A TeM:=T@)

- Bl i V(z,™) = V(z,")
“
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Ul(si") - Ul(zl') + &Ul' - Ul(zl) , thus ADI' -- M > 0
and T(sl") = T(zy) because the gas is ideal

Ug(s™) = Uy(8,7) « Mu,° M," ==&, " =80 < o
and T(zz) < T(:z") < I(zz')

Then:

- - - - AU & = - AU

ASI = 51(31 3 Sl(z1 ) > 1 1
I - a =4 - ﬁu £ - m

AS2 = Sz(zz ) Sz(z2 ¥y * 2 B’

T(zz”) T(:z)

» - Aﬂ &‘U

B T = *

T(zl) T(zz)

Finally we establish thermal contact between compartment 2 and the

environment until a state :1" zz“‘ is reached such that

Uz(:2 ) = 02(22 ) + AUz" = Uz(zz) thus

AUZ - - AUIZ = - AUl = AUZ < o

Thus T(zz"') = T(:z)

- . = - - - A“ =£ - _60
AS = 32(32 ) Sz(zz ) > 2 1

2 B '6U2
T(z,""") T(zz) T(zz)

—_— —

A 5, = o)

Now we compare the states z) z, and z, ~ zz"'
0(81") b “(31) U(zz“‘) - U(zi)
V(z,7) > V(z)) V(™) + V(zy"7) = V(z)) + V(z))

S$12(3177 2,777 = 8y,(z; 2)) + 85,7 + 85,77 >

_AU —AU
gty B¢ 8 & T2



&,

or Slz(zl z, ) - Stz(:l :2) > - Egl - EEE -
T(zl) T(zzl
1 Ao 1
- Ay, T(z,) ¥ - T(z,)
AU
i

For the initial state, P(zl) = P(:z).
For small changes dV, dUl - P1 d Vl, dU2 = P2 d Vz.

thus starting from z) 2z, dUl =Pd Vl 602 = -P d Vl , and
du
__3 = -1

v,

Thus for small d V starting from zy 2, ¢
, SR |
i iy [rlzli rtzz)]
or s if du, <o and T(zz) > T(zl) then d S > o

This result contradicts the assumption of Falk and Jung that the

state z; z, is a state of maximal entropy compared with other states

% 2, for which U(z1 ) = U(zl). U(z2 ) = U(zz) and F(zl z, )
= V(zl 32).

The maximum entropy principle can be used only for states 2, 2, which
are also in thermal equilibrium. This is clearly neglected by Falk

and Jung.

1f ve reject assumption (4) then assumption (6) becomes unnecessary

and meaningless.
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Assumption (6*) has also to be rejected : Falk and Jung confuse

upper and lower bounds for the emergy of particular systems i with conditional

maxima and minima for compound systems Eﬁai. 33]

Finally, this criticism removes the justification of a more general theory

of thermodynamics with special applications to thermal systems.



CHAPTER 8: A CRITICISM OF R. GILLS, MATMEMATICAL FOUWDATIONS

OF THERMODYNAMICS, Pergamon, 1964.

Starting point of the discussion of Giles' axiomatisation will be his
formal theory, as explained in Appendix A p.191-214. This formal theory
is independent of its physical interpretation. I will, however, add some
remarks on the interpretation of the primitive terms and the axioms of the
theory, for this will be necessary if we are interested in the question
whether the formalism is an axiomatisation of traditional thermodynamics.
Thus also, the foregoing chapters of Giles' work, where interpretarions
and justifications are given, will enter this discussion. Further, I will
undertake a comparison with my own approach which is called C P T (axiomati-
sation of Classical Phenomenological Thermodynamics) and C P T O (the
extension to open systems).

A veference to foregoing chapters of this thesis is given by CP T
followed by the number of the chapter, definition, axiom or theorem.

"States": a, b, € cvecs

Ciles' axiomatisation is an attempt to formulate a theory of the greatest
possible generality. The starting point is a set yof states, which zay
be interpreted as physical states, comprising non equilibrium states.

The 'rule of interpretation' has a certain vagueness:

"the state of a system represents its method of preparation .......,

+s++ two states .... need not be distinguished if they are equivalent in
respect of any prediction which might be made ....0e.y .... the term state
can refer only to comditioms in which the system concermed is isolated.
(1.4. p.17).
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ihe second quotation reminds us that in physics the concept ''variable
of state' is logically prior to "state". It is however admissible to

convert the logical order iqkn axiomatisation.
1] o
Processes' O, B, Ys e«e

The general concept 'process', being an ordered pair of states, has no
physical interpretation. Only certain specified processes, e.g.

'natural processes', can be interpreted.

"Addition of states: + "and '"Natural processes: =*"

The interpretation is dependent on the axioms, which explain the use of
the operators.

a*hb

A rule of interpretafion for natural processes is given (1.5. p.24):
" ... We write a + b if there exists a state k and a2 time interval t
such that a + k evolves (in isolation) in the time t into the state

b + k"-

The meaning of 'isolation' becomes clear in the definition of 'component

of content' (A.3.2) and the enumeration of the quantities which appear

as component of content, and remain constant in natural processes: the
energy, the quantities of the chemical elements, the electric charge and
the magnetic flux (if neutralisation of charge or current is not allowed),
and volume. The equivalent of 'natural process" in traditional
thermodynamics is "process realisable under complete isolation and constant

volume."

This implies that the initial states of natural processes are
either non equilibrium states, or states of systems which contain partitions

and consequently they are 'possible non equilibrium states'.
Aa+bh+g+d

The interpretation is: 'natural process, where a evolves into ¢ and b
evolves into d'; Giles proceeds: "thus the process (a, ¢) can drive the
process (d, b) backwards." (2.3. p.33).
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Cane is teupted to interpret the processes (a, ¢) and (d, b) as physically
meaningful. But the commutativity of a + b (Axiom A.2.1 (i)) implies that
in this case also b + a + ¢+ d, thus (b, ¢) can drive (d, a) backwards.
Processes, which are able to drive backwards other processes can easily be
'impossible processes', e.g. duplets of states of quite different systems.
A too physical interpretation is thus not allowed.

The differences between Ciles' axiomatisation and C P T do not exclude
a comparison. The structure (f, +, +) has similarities with the
structure (Z;, +~), where zi' + :i" is identified with 'i‘ zi".

The adiabatic accessibility relation =>is however quite different from
+ in its interpretation. The similarity will be clear if we compare

the axioms A. 2.1, and A. 2.2 with the axioms in C P T.

A.2.1 Axiom.
(i) The operation + is associative and commutative
(ii) a—+ a
(iii) df a+*b and b+ ¢ then a~+c
(iv) a~+Db iff a+c+Db +c

A.2-2 Axim
If a+-b and a+c thenb+¢c or c¢~+b
CPTAxiom 1.6, Axiom 2.9
For all Zi € p there exist simple preorder relations 'r#i such that:
[ : - =}. - . " i =>’ » . - .
(i) z; i % iff z; zJ ij z, zJ
(. -) 1 n —> P .. 1 n
il zi csan :i ermutation zi TEEE Zi
(111) 1f zi ere zi = zi e Ei then ﬂi = Zi
The only formal difference is that in C P T commutativity is restricted
to states of the same system, and that C P T 2.9. (iii) has no equivalent.



8.

"Componeats of codent": Q(x)

Its physical interpretation as the internal energy, the deformation
coordinates, and the elementary quantities has been given.
Paragraph A.3 will demonstrate the existence of a positive component
of content Q(x) defined om all x e:f. and will prove that if (a, b)
is not possible, then there exists a positive component of content,
such that Q(a) # Q(b). The proof applies the extension theorem
(B.3.1. p.219). An additive function Q" (t é + y) = t A(6)
defined on a subgroup s of processes t § + y, where t is an
integer, and y is an arbitrary possible process, can be extended

to an additive function Q°“, defined on all processes, because

A(8) is so defined that Q° (£ § + y) £ A (t & + v) and A(a) is
finite linear on the group of all processeag, and ful.'t:luu'?6
contains an internal point € with respect to A. Next

Q(x) = Q°* (x, 2x) can be proved to be a positive component of
content, and Q(a) # Q(b) if (a, b) is not possible.

The definition of the function ) requires the introduction of an

inclusion relation &, through:

A.3.3 aCb iff there exists a positive integer n and a state ¢,
such that (n a + b, n b) is a possible process.

The existence of A requires an axiom:

A.3.6 Axiom. There exists an internal state
A.3.5 Definition. A state e is internal if, given any state x,
there exists a positive integer n such that x «n e,

The physical interpretation of the concept of an internal state
causes some hesitation: it must be a state of a system containing

an amount of all possible components of content: i.e., all chemical

elements, volume, electric charge, magnetic flux, internal energy.

The astumption of the existence of such a state might be avoided,

and what kind of existence is meant?
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Avother criticism of the procedure outlined above, links up with a remark
of Duistermaat ((6) p.21): ‘“Let R be a subset of a commutative

group (G, +) and let P, be the sub-semigroup of (G, +) generated by
Rmd 0. Then the largest subgroup of (G, +) on which additive
extensions of additive functions on ﬂa are uniquely determined is the
group GR of all a € G with na = b-c for some natural number n and some
b, c ¢ %%- Because of the arbitrariness of extensions of real measures
of Q*procaues to elements which do not belong to Gﬁ..- it would be
reasonable to extend measures of Q processes only to GR and not to

the whole group G." This implies that the largest subgroup of 9

on which an additive extension Q““ of additive functions 0” ong% is
uniquely determined is the group {a: na =t 8§ + y}. 1If a state a

is chosen as unit of content: Q(a) = Q”""(a, 2a) = Q““(8) = 1, then
Q(x) = Q*“(x, 2x) is determined only if n{x, 2x) = t (a, 2a) +

(p,q) where (p,q) is possible, ornx =t a+pand 2nx=2+¢ta+ q.
1f we represent x, a, p and q by vectors in content space

g(x). g(a), g(p) and g(q), then, because g(p) - ng), it follows

n g(x) = t(g)(a) which implies that x and a differ only in a factor t/
in all components of content, thus x and a are 'similar states' in the
terminology of C P T 0. The domain of definition is thus indeed utterly
restricted, and the mathematical argument does not lead to a procedure
which enables us to measure components of content, and the components
of content defined through Q(x) = Q““(x, 2x) do not seem physically

relevant.

The proof that Q(a) # Q(b) if (a,b) is not possible necessitates the

introduction of another axiom:

A.4.3 Axiom. Civen a process o, if there exists a state c such that for
any positive real number £ there exist positive integers
m, n and states x, y such that ®/, <€, x emc, y €m ¢,
and (x,y) + na + o then & + o.



figure 8.1
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The direct physical interpretation of the axiom is thwarted by the
interpretation of & and the expression (x,y) + n a + o in case
(x,y) and o are impossible processes. DBut something can be said
in view of certain implications of the axiom.

Firstly: the Archimedean axiom is implied:

A.4.4 Theorem. Given states a, b if there exist states x,y such
that the relation n a + x +n b + y holds for

arbitrarily large integers n then a + b.

This axiom enables us to include in the natural (or possible) processes
those which are not natural (or possible) in themselves but can be
'driven' with the assistance of 'infinitesimal' processes. In

C P T the interpretation of 'possible process' is so wide that

these processes are included already.

Another implication of A.4.3 is, that for states a, b of the same

'content' the entropy difference A S(a,b) is finite (see 4.4.5).

Within the framework of C P T this leads to the interesting conclusion

that the entropy S has a lower bound (an axiom in C P T, which is part

of the third law: C P T 6.4). Consider the S(U)K curve of a thermodynamic
system which obeys the maximum entropy principle, and continuity assumptions,
and whose internal energy function has a lower bound (see figure 8.1).

The points A, B, C on the curve represent equilibrium states a, b, c; the
points A®, A““, ... represent non-equilibrium states a“, a””, ... with the
game content as a, and consisting of states 'similar' to b,c (see CP T O
(2 p ), so that a” -'%ég b + %é§ c. A necessary endition for
finiteness of A S(a, a”) at constant content is finiteness of the

distance A A”, and this implies in case of a lower bound of U, a lower
bound for S.
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Quasi-Entropy: S(x) -

The concept of "quasi-entropy' replaces the role of the concept

of "entropy' in a theory that gives 'natural processes' a more
fundamental meaning than 'adiabatic processes'. 1In such a theory
the connection with traditional thermodynamics will be established
through additional assumptions concerning the 'quasi-entropy' of
'mechanical states' or the 'quasi-entropy difference' of 'mechanical
processes'. The formal similarities of the quasi-entropy as
defined in A.4.1 and the set of extensive entropy functions Si

as defined in C P T 2.1 will be clear after imspection.

A.4.1 Definition. A real valued function S(a) defined for every

state a is a quasi-entropy function if:

(i) S(a + b) = S(a) + S(b)
(ii) ifa-+b & b+a then S(a) = S(b)
(iii) ifa-+b &b # a then S(a) < S(b)

C.P.T. 2.1 Definition.
A set of extensive entropy functions §; for
the systems Z, ¢ big a set of real valued
functions Si(:i). z; € Z;, such that
- - = - e
(i) Si(zi ) ¢ Si(zi ) iff z;” = 2,
(ii) if2=2; x2; X.... then s(z) =S(zg 2; +00) =
Si(zi)-b Sj(sj)l-......

The proof of the existence of a positive quasi entropy function S(a)
for all states a g o is similar to the existence proof of a positive
component of content and similar criticism applies. Again a
special function, Y{a), ii introduced. It is not profitable

to consider its physical interpretation. With the help of this

function a function 1@1) is defined on the set of possible processes
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?P and this function can be extended to a function I~ defined for all
processes. Finally, a function S(a) = I” (a, 2a) is defined for all
states and it is demonstrated that S(a) is a positive quasi entropy
function. The function I may be formally extended to all processes,
it is, however, uniquely defined for the set of processes

{a : nag = mB}, where § is a possible process (g ¢ 9%). InCPT
the introduction of functions, whose meaning seems to be exclusively
mathematical, is avoided. An attempt to define internal energy
functions and entropy functions on the domain of all states is not

undertaken, because it seems unprofitable.

Boundedness

A.6.3 Definition. A real valued additive function Q(a) defined for
every state a is bounded if there exists a constant
k such that, for all a, |Q(a)| < k |4l -
(||a]| = inf {™/n : na C me}, where e is the unmit
state (A.6.1))

The physical interpretation leads to difficulties owing to the use
of the concepts 'internal state e' and 'inclusion C'. The
justification of its introduction as given on p.63 is not convincing:

n

««« a component of content Q is physically acceptable if and only if

it is bounded .... If Q is not bounded then we can find states x with
|| x || arbitrarily small but with | Q(x)] > 1, say. But themn, for any
state a, the states a and a + x differ arbitrarily little in content,

and yet|Q(a + x) - Q(a)| > 1. On the other hand, if Q is bounded

this cannot happen....." The following example demonstrates that
boundedness is not necessary to avoid the situation described.

Suppose the graphic representation of the function ”:H - IQ(x)l is

as in figure 8.2, with 1lim IQ(x)L/T!xII = o: this function

x| + o

is not bounded, but remains physically acceptable.
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The vequirément of 'boundedness’ seeams to be introduced to guarantee
¢ontinuity of thermodynamic functions. 1Its counterpart in C P T might
be the continuity dssumptions of chapter 4.

Equilibrium states

A.7.1 Definition. A state a is an equilibrium state if there exists
no state b such that a + b and b # a.

The definition implies that state a is a state of maximum entropy,
compared with all other states with the same 'content'. This clarifies
the relation of Giles' axiomatization and Gibbsian thermodynamics,

and consequently with C P T, where 'equilibrium state' is a primitive
concept and the axiom can be stated that eqﬁilibrium states are states
of maximum entropy. Because in C P T a more specified concept of
equilibrium is given through the distinction of different 'comnectioms',
the maximum entropy principle can be stated also in a more specified
form (see CP T 5.1).

" A.7.2 Definition. A state is a perfect equilibrium state if na is
'  an equilibrium state for every ppaitiva integer n.

Giles relates this concept in its physical interpretation with equilibrium
states of simple (homogeneous) fluids. The associated concept in C P T 0
_ ig 'equilibrium state of a homogeneous system'. In C P T 0 'homogeneity'
.. is firstly defined and next the theorem is proved: for all ‘'similar
states' z, and z,: §;(zp)  Uiz) W (z) o = :
Bylegd i Bglyd . Wylegdie o sy TEE B
The 'converse of this theorem is : for homogeneous sytems states a and
¥ & are 'similar’, and consequently if a is an equilibrium state,
wthen r & is also. ' o
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Potential :

A.8.1. Definition. A potential f is an additive function on content
spaca!- such that - ?(’(x)) 2 S(x) for every state x.

A.8.2. Definition. We say state a has the potential f if
S(a) = ‘f(g(l)). -

It is not allowed to interpret a potential as a vector consisting of
absolute temperature and Massieu functions. This interpretation would
pre-suppose differentiability of the function S(g(x)) . Giles explains
what can be derived without the assumption of continuity, and he realises
that more explicit results can be obtained if such assumptions are used.
The final result of paragraph A.8 is:

A.8.5. Theorem. If c = a + b is a perfect equilibrium state having
the potentialf then a and b are themsgelves perfect

equilibrium states having the potential!. and conversely.

In CP T assumptions of differentiability are indeed introduced and these
lead to the existence of absolute temperature and Massieu functions and
to the theorems CP T 5, 11-17.

:i zj E Ca

2y 2; €Cy and 2z, 2, € c¢k iff Fiypp (2;) = Fiyp (aj)

iff T(zi) = T(zj)

which, together with the tranmsitivity of the connection relations may
be considered as specifications of the above theorem A.8.5.

Absolute entropy

The last paragraph of Giles'axiomatization introduces the concept
'anti-equilibrium state' and assumes the existence of an anti-equilibrium
state for every state x, with the intention to obtain"z:his way states of

reference for an absolute entropy function:
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A 9.1. Definition. A state x is an anti-equilibrium state if there
exists no state a such that a + x and x # a

A 9.4. Axiom.
(1) If a is any state then there exists an anti-equilibrium
state such that x + a
(2) If x and y are anti-equilibrium states then so is x + y

A 9.3 Definition. A function of state S is an absolute entropy
function if:
(1) S is a quasi-entropy function

(2) s8(x) = o for every anti-equilibrium state x

The axiom A 9.4 is physically very dubious. It could be argued that
the contrary is physically more realistic: such an axiom would express
that states of zero entropy and zero absolute temperature do not exist;
the points in phase space, which represent such states, form the
closure of the open set of 'occupied' points.

Giles' approach is essentially different from that of CP T. InCP T
no attempt is made to define an absolute entropy function on the set of
all states. For certain subgets of states (formal systems) a greatest
lower bound for the entropy is assumed and it is recognised as part of
the "third law' of traditional thermodynamics.

Apart from a 'quasi-entropy' and an 'absolute entropy', Giles introduces
an "entropy function':

A 9.12. Definition. A function of state So is an entropy function if
(i) S, is a quasi-entropy function, and
(ii) Sc(m) = o for every mechanical state m.

The mechanical states form an arbitrary subset of the anti-equilibrium
states. A rule of interpretation is not given and Giles is aware of
the difficulties involved. Duistermaat has rightly remarked that it
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will be physically more acceptable if we omit "mechanical states' and
restrict ourselves to the introduction of 'mechanical processes'((6) p.51):
this also avoids the problem of the connection between 'mechanical states'

and'anti-equilibrium states'.

Construction of an energy function

Considering the failure of the theory, as described above, to conmstruct
component of content functions which are uniquely defined on physically
interesting subsets of UP, it is desirable to discuss the construction
of an energy function which Giles offers in paragraph 11.3.

The procedure is as follows:

(1) Select two arbitrary states Ao and Al. of a system A, and define
E(AD) = 0, E(Ali -1

(2) Prepare a row of systems in state Ao and a row in state A-
To determine the energy value of a state Az. which is intermediate
in hotness between A and A,, weak thermal contact between A and A
is established, till one of the systems reaches the state “2' As
soon as that happens this system is replaced by a second system of

the same row, etc.

1

Afterm*nlteps:mhltnho*(mfn-l)Azan

Then, according to Giles, also 4\3 is intermediate in hotness between Ao
and Al; thus Az c:Ao - Al' and AS ::Ao P Al; consequently
lagl] < 11ay + 4,11, and |lag]] < [1a, + & 1]5 thus

Kthh. & Hm . [;—-‘5—5 EQ) + == EQ)
This procedure is only applicable to one dimensional systems (or two-
dimensionality of the 'completion'), which means tyo systems with
internal energy as completely determining variable of state. It is
however not clear which criterion leads to the selection of the subsets
of states forming these systems, from the set Jf of all states. It
pre-supposes a more specified theory than the general theory of (-", *, *).
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Further, the mscimee catropy principle {or an equivalent statement) is

presupposed, and présumably also differeatiability of S(E). Finally,
boundedness of E is presumed, which property seems not clear physically.
This criticism will lead to an alternative approach in C P T, which
presumes a division of 7 in subsets Z;y or 'systems', and a selection of
systems with special properties : energy meters (see C P T 3.15,16).

Construction of an entropy function

This chapter will close with a few remarks about Giles' construction of
an entropy function in paragraph 11.4. This construction might be
reproduced as follows:

(1) Select two arbitrary states Ao and Al of a system A, and define
S(&a) = 0 and S(Al) = 1.

(2) An auxiliary system K and a mechanical system M are necessary
to determine the entropy of an arbitrary state Az of the system A.
A series of quasistatic adiabatic processes of systems A + K,
and quasistatic natural processes of K + M is performed, such that
the result is:

m Ao +n Al + Ib - HI ., <% (n +m Az - R1 + MZ' and
next the natural irreversible process K, +M, + Ko “ H3.

It follows that m an +n Al + Hl + (n + m) A2 + H3, where (Hl, HS)

iz a "mechanical process'. Thus S(Azjz m S(A) + n S(Alj,
— s [+ ] ———
m+n m+n

and because only the last step is irreversible natural:

m+n*rao m+n m+n

S(a,) = lim [ m SA) + _n 5(*1)] .

The procedure is again only applicable for one-dimensional systems.

It assumes the concept of a quasistatic adiabatic process, which falls
outside the framework of the general theory of (S, +, *). Giles
argoes that the necessity of quasistatic performance of the processes is
superfluous: ' .... we may not be prepared that 0 (i.e. a "primitive
observer') can recognise equality of hotness. However, in principle

this is not necessary. For if O carried out the experiment (for a given
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value of N = n + m) a large number of times, making the said adjustment
at random, it will occasionally happen by chance that their accuracy

is good; since the experiment determines a bound to the unknown quantity,
rather than an estimate of it, one good trial supersedes any number of
bad ones'. This argument is invalid, because in that case each of the

N process steps of A + K + M adds to the irreversibility and if N + o,
then the probability p to obtain a good total accuracy approaches zero.

In C P T there is a possibility to choose 'one dimensional systems'.
Also the concept of a "quasi-static adiabatic process' is available.

The construction of an entropy function in C P T (2. 16, 17) is, in some
respects, similar to Giles' construction, in other respects it is
different: e.g. following Cooper (5) another limiting procedure is
used.
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SPTER 9: A CRYTICISM OF J. J. DUXSTERMAAT, ENERCY AND ENTROPY

AS REAL MORPHISMS FOR ADDITION AND ORDER, Synthese 18, 311 (1968).

je

Duistermaat's article will be discussed in so far as thermodynamics is

congsidered. Therefore, I will start from part III:

Thermodynamics. The given axiomatisation will be considered with respect
to its consistency, and with respect to its physical interpretation.
Algo, a comparison will be made with C P T.

3.1.1. Axiom: (S, +,uff is a preordered commutative semigroup.

(s, +,Uﬂ$.hll to be interpreted as (D: +, *) in Giles' axiomatisation.
The same criticism applies. The axiom expresses that (S, +,/0) satisfies
the conditions:

1.2.6 (ii) (a + x, b + x) e/ iff (a, b) € SO

1.2.6 (iii) Ais a preorder in S (i.e. reflexivity and transitivity
applies).

This axiom is thus equivalent with Giles' axiom A.2.1., which is already
compared with C P T. ( see chapter 8 )

3.1.2. Axiom: There exist irtevernibledﬁz;-procesaas.

The concept of aneﬂg:-process is explained in 1.3.5. With the commutative
semigroup of states (S, +) is associated the commutative group of processes
(s x 8, +), where addition is defined by (a, b) + (c, d) = (a+ c, b + d).
S x § falls gpart in equivalence classes [&, b] through the equivalence
relation v, defined as follows (1.1. p.l1l0):

(a, b) v (a°, b°) iff (I x, x*) (x, x"eS & (a+x,b+x)=(a"+x*, b* + x%)).
The introduction of the group S X S, and the equivalence relation v seems to be
performed because of its mathematical usefulness, it can be doubted whether a
physically meaningful interpretation for v is possible (see C P T chapter 8).
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Let us, for clarity, indicate states by roman letters a, b, ... and
formal processes by greek letters a, B, ... Interest is restricted
to certain subgroups of the group of formal processes J =S xS,
namely to the natural procesaes/f, the mechanical processesi$7(the
adiabatic processes qu An attempt to formulate a general theory for
the group of all formal processes j seems to me unprofitable, as
already explained in chapter 8. FEntropy difference functions and
energy difference functions can only be sufficiently defined on

subgroups of
-

In the group (‘, +) a preorder < is generated by a subgroupziQSE natural
processes: a Biff B-a e #(if a = (a, b) then - a = (b, a)).
@ < B can be interpreted as 'the process B can drive the process a
backwards'. This has the usual meaning, if a and B are possible
processes. This restriction is, however, not made by Duistermaat

and the criticism of chapter 8 can be repeated.

The subgrouprﬂ’i; extended to a subgroupzfi:. which is introduced to
comprise those processes which are not natural in the strict sense
(i.e. spontaneous under complete isolation) but which can be performed

with the help of an "arbitrarily small' spontaneous process.

The author explains that, if the existence of a 'dominating process'

is assumed (i.e. a process y such that for all £ 2 o, which implies

E € Aere exists a natural number n such that £ < na), £ < vy,
iff (Wr) (En, k) M/k<rak (E -y) £na), where r is .

a positive real number, and n and k are natural numbers. The
assumption of a "dominating process' is closely related to the
assumption in C P T that all adiabatic processes are measurable by

a unit process of an entropy meter and similar assumptions for processes
under energetic isolation (see C P T 2.21-22, 3.18-20). The extension
of toifg:-has a function which is parallel with the introduction of
the Axiom A.4.3. in Giles' axiomatisation and, as is already mentioned
in chapter 8, the problems solved on the formal level through it by Giles

and Duistermaat are solved on the level of physical interpretation of =

and € u) in C P T, where reversible accessible processes include
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processes wvhich are not spontanecus but 'quasistatic' accessible
under the given isolation. This corresponds with an approach in

wvhich ¢ and ¢ are assumed to be identical, i.e. the preordered
as
commutative group (g, +, €) is “jrchimedean" (see (6) 1.3.8).

The axiom 3.1.2.: 'there exist irreveraibley(:.-procenea“ is
associated with: "there exist states zo‘, zo“ of a meter 2 such
that :o" -+ zo"‘“which is implied in C P T 2.17.

The axioms 3.1.1 and 3.1.2 imply, according to Duistermaat, the
existence of non-zero measures of natural processes. This is
presumably to be considered as an application of the corollary

of theorem 1.4.1.

1.4.1. Theorem (a, b) eﬁ)” iff £(a) ¢ £(b) for each (s, +,®)
morphism f.

Corollary: There exists a non trivial real (S, 4-,‘2) morphism iff
there exists an irreversible {8‘ g Process.

But it can be doubted that the corollary follows from the theorem.
A possible proof might be attempted in this way:

(a, b) eﬂu & (b, a) £ Qu iff £(a) < £(b) and not

£(b) ¢ £(a) for each real (S, +@) morphism £; this does not imply
(3£) (£(b) > £(a)) because the set of real (S, +,&) morphisms
might be empty!

A complete treatment of the necessary and sufficient conditions for
the existence of measures of J:; -processes is given in the general
theorem 1.3.4:

1.3.4. Theorem. A real additive function fa on a subgroup G, of
a preordered commutative group (G, +, <) can be
extended to a real (G, +, <)-morphism if and omly if
fo is dominated by some real function FO on some
dominating subset A of G.
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The foregoing conditions are fulfilled for 29; +,;{$-if for the set
Go is chosen the set of processes {n Y : n = integer, Y = unit process},
f (ny) =n £(Y) = n, and a dominating function v(a) is defined as in
Giles' axiomatisation ((4) A.4.6). This approach has already been
criticised in chapter 8. A simplification of this ocan be obtained if
we choose for G the subgroup of possible processes ’P' for G, again
the set {n v} and f(n Y) = n, and Y is considered as a dominating
element. This is in fact the approach of C P T. It has not the
generality of Ciles' or Duistermaats' approach, but the latter
recognises that exension of measures of .f/processes to the whole
groupg; is not profitable (see 1.3.8).

The uniqueness of existing (G, +, &) morphisms on a subset G” G
requires an extra conditiom (1,4.2): G” is linearly ordered with

respect to ¢ « This condition can be introduced as an axiom which,

a
applied to (ﬁ +,Vf/)-. runs as follows:

3.1.3. Axiom. If (x, y) 54:3 and (x, z) E‘..(u then (y, z) l—:pVa; or

(51 Y) E"/al

This axiom is closely related with Giles' axiom A.2.2. and with the
assumed comparability and transitivity of the relation=> in C P T.

Dustermaat prefers however to derive 3.1.3 from the definition of an
entropy function and two axioms, introducting the set of mechanical

processes of(us a new primitive term.

3.2.1. Axiom: (i) o”is an equivalence relation in S
(ii) Catalysed sums of zero and %processes are oﬁprocessel

(i.e« (a + x, b + %) Eo/(iff (a, b) Eaé’andofis a

preoxder in S).
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3.2.2 Definition: S js an entropy function on (S, +,u4<245 iff:
(i) S is a real additive function on (S, +)
(ii) if (a, b) €/ then S(a) & S(b)
(iii) if (a, b) ecHthen S(a) = 5(b)

3.2.4 Axiom: Each mechanical process which is a difference of two
natural processes is a reversible asymptotically natural

process.
The derivation of 3.1.3 can be reproduced as follows_

3.2.4. ,iff each measure of f{/;rocesaes can be extended to an entropy
increase function A S ong,iff measures of Vf/processes are uniquely
determined up to a gauge factor iff 3.2.1.

The second step assumes that A § ong is uniquely determined up to a gauge
factor. But it is not perfectly clear which presuppositions are

involved in the proof of this statement as undertaken in 3.5. It might be
preferable to take 3.1.3 above 3.2.4 as an axiom.

The discussion of the relationships between Duistermaat's axiomatisation
and traditional thermodynamics is hindered by the lack of clear rules

of interpretation for the primitives: the remark’ "thermal isolation'
seems to be an essential part of the physical interpretation of mechanical
processes’ (3.2. p.50) is insufficient. An attempt to give a rule of
interpretation for c@ather than 'quasistatic adiabatic processes' leads
into difficulties. It seems that the introduction ofcfwith the
properties of axioms 3.2.1 and 3.2.4 begs the question of the relationships
between the physical content and formal structure of thermodynamics.

Energy. The First Law of Thermodynamics

The introduction of an internal energy function takes place in a manner
essentially different from Giles' approach and can be summarised as
follows:
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Primitive terms are introduced: the set of purely mechanical natural

processes: the set of all states of S which are 'at rest': So'

mech’
the set o pairs of states which only differ with respect to their
properties of motion: (J‘

Next an energy function is defined:

2.2.2. Definition. E is an energy function on the mechanical
system (S, +, o/ ., so.%) iff;
(¢) E is a real additive functiom on (S, +)
(B) If (a, b) e, then E(a) = E(b)
(y) If (a, b) Eaf; and b € So then E(a) 3 E(b)

A passive process a € pi.s defined as a catalysed sum of %ech' stopping
and zero processes, stopping processes being processes a, b € a{(; such
that b € Su. Consequently E is an energy function iff - E is a real
(s, 43‘95-mnrphism.

Next a procedure for the experimental determination of E differences
is explained (2.2.3). This procedure restricts itself to the
measurement of energy changes op passive processes (which may be
interpreted as processes in which the kinetic energy decreases, and
no other energy changes occur). Then it is assumed (3.3 p.55) that
the energy increase function A E is uniquely determined onu# up to a
gauge factor: this means that the domain of unique definition of the
A E function is extended to processes for which, until now, A E could
not be measured experimentally. A procedure for measurement in

this domain is not given.

The last step is the definition of a thermodynamic energy function as
an extension of an energy function from./m;ch to#(3.3.1) which is

made possible without inconsistencies by axiom 3.3.2.
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3.3.1. Definition: [ is called a thermodynamic energy function with
respect to the mechanical energy increase function A E on
iff:

(i) E is a real additive function on (S, +)
(ii) 1f (a, b) €4/ then E(a) = E(b)
(iii) If (a, b) eq(:hen E(b) - E(a) = A E([a,b]).

3.3.2. Axiom: 1f o is a mechanical process which is a difference
of two natural processes, then A E(a) = o for each mechanical
increase function A E onq?f

Duistermaat considers this axiom as "the first law of thermodynamics".
This seems incomplete: the assumed possibility to extend the mechanicgl
energy increase function A E to mechanical processes is an equally
important part of the first law, within the framework of this theory.

One parameter Contact Experiments. Heat. The Second Law of Thermodynamics

In this and the following paragraphs, the axiomatisation restricts itself
to "narcistic systems , parametrised by a component of content E'.

Definition: A subsystem T of S is called parametrised by E if
a, b € T, E(a) = E(b) implies that (a, b) 544;;.

Definition: T « S is called narcistic if for each a, b € T there
exists a state ¢c € T with (a+ b, c + ¢c) E‘Jg;t

The only systems of traditional thermodynamics which obey the condition
'parametrized by E' non trivially, are systems which are completely
determined by the value of the internal energy. These are systems
without variable deformation coordinates or systems with deformation
coordinates whose values are completely defined by the internal energy,
e.g. a gas with variable volume but with constant temperature or constant
entropy. This is a severe restriction on the generality of the theory,
and it might be considered as inacceptable. For narcistic systems,

parametrized by E, it is proved that S(E) is dyadically concave, but



116.

not necessarily continuous. Duistermaat assumes in subsequent sections

that S(E) is continuous but not necessarily differentiable.
A concept of equilibrium is defined (p.60):

' oeee T, and T, are in equilibrium at a; € T}, a, € T, iff for

each € > o there are a,” ¢ T,, a,”¢ T, with E(a,) + € > E(a,")
1 1* "2 2 1 1

> E('I) such that ('1‘ + az‘, a, + az) ac4::, and there are

ll" [ Tl, az“ € Iz with B(al) > E(al“) > E(al) - ¢ such that

(a)°° + 8,%% 2) + a) e -

This can be expressed as: S(a1 - '2) is maximal compared with

B(al‘ - lz‘), where al‘. ’2‘ are neighbouring states, such that

E(a,” + a,”) = E(al + az). This is clearly the maximum entropy

principle, restricted to systems 'parametrized by E'. Narcistic systems

can be interpreted as systems whose E space is 'dyadically occupied’

and for which the maximum entropy principle holds good.

In C P T primitive terms 'thermal connection' or 'in thermal
equilibrium', and 'kth force comnection', or 'in k'™ force equilibrium'
make it possible to replace the above definition of 'equilibrium' by

a similar but more specified statement which has the status of an
axiom. This specification, and the extension of the principle to
'simple systems' which are systems with multi dimensional phase space
EJ. ses xk, ..-]. are essential for the further development of a gemeral
theory of thermodynamics.

The subsequent theorem (3.4.4) reads: For subsystems T,» T, of §, such
that T, and T, areparametrized by E, and S(E) is differentiable:
35(a;) 3S(a2)

Tl and T, are in equilibrium at a, €Ty, 3, € Tz iff - - g "

This theorem is similar with C P T 5.10: under certain conditions ....

9s,(z,) 9s.(z,)
- G ¢
% 25 € Ce i“['ﬁ.—] - [T'u—j-] :
: i Xys
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Hext & new primitive term: is incroduced by Duistermaat:

"thermal system'. The restriction of an energy function to a thermal
system T is called a 'heat function' on T. Thermal systems could be
interpreted as systems with constant deformation coordinates, but the
interpretation is not really attempted.

The second law is then announced in the following form:

Axiom: Let E be a thermodynamic energy function as in 3.4.5.
Then [n, a”] is an irreversible adiabatic process if
a, a” belong to the same thermal system T € O and if
E(a) < E(a™)

Criticism of this axiom is possible in so far as it does not allow
for negative absolute temperatures. The axiom holds only for
'termal systems' with positive absolute temperature, and if we
restrict ourselves to the latter class of systems then the axiom
is an implication of the concave upwardness of the S(E) curve,

and is consequently no axiom at all. It cannot be expected that
a 'second law' would still be necessary after the foregoing.

The measurement of entropy differences as explained in 3.5. is done

with the help of Carnot cpcles. It presupposes at least the existence
of such cycles adapted to arbitrary processes. According to Duistermaat
all known measurements of entropy seem to be of this kind. This can

be doubted. Alternative procedures are given by Giles (4) and

Cooper (5), and followed in C P T.
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CHAPTER 10: A CRITICISM OF J. L. B. COOPER, THE FOUNDATIONS
OF THERMODYNAMICS. JOURNAL OF MATHEMATICAL ANALYSIS
AND APPLICATIONS 17, 172-193 (1967).

The article consists of an introductory part with a critique of
classical theories and a systematic development of an axiomatic
system for thermodynamics.

The critique of classical theories is certainly the weakest part

of the article but fortunately this does not affect the main
purpose : the development of an axiomatisation. I will start

with a discussion of the shortcomings of paragraph 2 of the article.
Quotations will be placed between asterisks.

2. Critique of Classical Theories;

* L.1 Clausius' Law ....
L.2 Kelvin's Law ....
L.3 Caratheodory's Law : In any neighbourhood of any state s of
an isolated thermodynamic system there exist states which
cannot be reached from s by any possible processes. ¢

Cooper's formulation of Caratheodory's Law is identical with the original
formulation if 'possible processes of an isolated system' may be
identified with 'adiabatically possible processes.'

(2) There exists a real valued empirical temperature function (s),
vhich is an equivalence relation.

#*(b) The work done in a small quasistatic adiabatic change of a thermodynamic
system is given by a differential form d Q. *
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The specification 'quasiecatic’ im (b), wh.ch is also preeent in
GCaratheodory's article, seems unnecessary, and is presumably a mistake
in the latter article. The notation d Q for 'work done' and d W for
'heat transferred' is disturbingly unfortunate. The concept of

'heat' is not defined in Cooper's account. The Caratheodory approach
attempts a mechanical definition of heat on the basis of the first law.
A form of the first law deserves to be mentioned under the important
assumptions, (a), (b), leading to the entropy law:

*L.4 The Entropy Law. There is a universal function of empirical
temperature T(T), which is itself an empirical temperature
and a function of state ff) such that d W= T df. *

*A. Either L.1 or L.2 implies L.3. L

The proof that both the Clausius Law and the Kelvin Law imply Caratheodory's
Law leads to the conclusion that given any state, of a compound system,
there exist states arbitrarily near it which are inaccessible, under
complete isolation, because of Clausius' Law or Kelvin's Law. This

does not imply Caratheodory's Law, which considers adiabatically possible
processes of a bigger class of systems which contains in particular also

simple systems.

*B. L.3 implies that there is a universal function g(T) of empirical
temperature such that d W = g(T1) df for some function f. *

* L.l implies L.&
L.2 does not imply L.4 : L.2 is equivalent to L.3 with the addition
of the assumption that the work dome in any isothermal change

is non zero. ¥
It seems that in the proof of these theorems the concepts of 'heat' and
y and
Tys ‘l'2 < T is stated: * It follows from B that if the change of entropy

'work' are mixed up. For a Carnot cycle between temperatures T
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at T, is A’o and at 1, is - &f? then the gquantities of work (sic!)

done at these temperatures are g(tl) a;a and ~ 3(12) a,?, respectively, *
If the use of the term 'work' in this context is not a mistake, then

the 'cycling' system must be an ideal gas (along an isotherm: d Q = -d W)
and thus the existence of ideal gases are presupposed, which is denied in
the sequel of the argument. The proof continues: #*Clausius' Law
asserts that these cannot be equal: otherwise the cycle would result
only in a transfer of heat; * This assumes that the work done along
the two adiabatic curve pieces of the cycle cancel each other, which

is, in general, not true. The traditional argument would be: if

the heat taken up at temperature L3 is equal to the heat given off at

Tys then f(d Q +d W) # o along the cycle, which contradicts the

first law: thus 3(1‘1) # 3(1‘2).

The proofs of this paragraph are not acceptable in the given form and
the question of the relationships between the different forms of

the second law needs a further examination. This is, however,
outside the scope of this chapter.

3. Accessibility conditions and Entropy functions

% S.1 The state space S of a thermodynamic system & is a
separable topological space. *

The hypothesis of separability needs additional specification to be
physically fruitful. This specification is given in the definition

of a simple system (p.187). In C P T the axiom is an implication of
the supposed "measurability' of the systems, with 'meters' for which
real valued internal energy and deformation coordinate functioms could
be defined on the basis of topological properties expressed in (V| J -r“
(see CP T 3.16, 3.20, 4.3).

®* Acc 1. =+ is a linear preorder in S *
* L.3
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If the interval copology (S, 34) is chosen, such that s, <s, iff

8, *8,, then L.3” is trivial, except the implication that there

do not exist 'first states'. The author has presumably in mind
that the state space is determined through 'mechanical coordinates'
e.g. the internal energy U and deformation coordinates X, in case

of "simple systems'. I agree that for the restricted purposes

of this paragraph only the separability of the phase space is needed.

* Acc. 2 If 8, * 8, then there are neighbourhoods N(sl) and N(sz)
of 815 89s respectively, such that if s ¢ N(sl) then

ll-razandifne}l(az) then¢1+s *

Again, some specification of the topology of the state space is
desirable to give the axiom physical significance and to exclude

a choice (S, ,7() which makes the axiom trivial., The counterpart of
the axiom in C P T is the assumption that S(U, “'lh’ cie) 18
continuous at all occupied points of phase space (C P T 4.26).

4. Composition of systems : Additivity of Entropy

* Systems él and 62 will be said to be isomorphic if there is
a one-one map of the state space of é]' onto that of 62 which is
a homeomorphism and preserves all thermodynamic relations. *

The corresponding term in C P T is 'identical'. Whether systems,
which differ only in extent are excluded from being isomorphic is’

not certain: in this case there exists a one-one map which associates
'similar' states (see CP T 0 (2)).

* A system & is called the composition of systems c.‘:l, 62. e &' and
is vritten @ = {d.l. e‘.z, — éan) if there is a homeomorphism of the

product space Sl x 52 «...% S™ onto the state phase of & such that if
{31. .2. e s") is the state corresponding to (sl. 82, - sn) then:
Int (a) {sl, sz, ...sr—l, e s“l, vee, BT}

{ll. 82, sos o7 ke azr, srﬂ', ces, 8"} if and only if alr-* szr.
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Int (b) If(ép is isomorphic with &5 the state derived from

L q

(8, «aujp sP, esnp sq, ««.») by permutation of s” and 89 is reversibly

accessible from it

Int (¢) If A, B are complementary subsets of {1, 2, ...n} and éﬁ

is the composition 221, 222, ... 2%} and 42 is'{gébl, ....épn-P}
A

thenG‘[Cla ng}*

The relationships between this definition and the "metrization axiom'
in CP T (2.9) are straightforward. CP T 2.9 iii: if 2z ... z° =
2z ... 2”7, then z” => 2z”” has no counterpart in the above definition,
but this property is used in Cooper's proofs as well. It might be
necessary to consider iii also as a defining property of compositions

in Cooper's sense.

* Int 1. There is a class of elementary systems, which have simply
connected state spaces. This class contains at least four
systems isomorphic to a systenléa The composition of any
four elementary systems exists. *

The elementary systems, with connected state spaces correspond in

C P T with an entropymeter, which can be duplicated. The meaning
of the term 'connected' in this axiom becomes clear through its
consequence: the existence of (empirical) entropy functions whose
values form an interval of the reals. Connectedness is thus closely
related to the first property of the entropymeter in C P T:

&£, H = @, 9 @©r127.

I do not feel the need to avoid the assumption that the composition
of any two thermodynamic systems exists. 1In a discussion of the
relations between mathematical foundations and physical content of
a theory a distinction between mathematical existence and physical
existence might behelpful. It is also not clear to me in what
sense the assumption leads to an infinite regress.
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® Theorem 2. Under the assumptions of Ace 1-3 and Int 1, there is
a function ?which is defined on the state spaces of
all elementary systems, which is entropy function for
any one system, and which is such that the function

(31) -l-r(sz) of {31, 32} is an entropy function
for {G}, C?) «

This theorem is identical with C P T 2,19 and 2.16. A part of the
proof in C P T is borrowed from Cooper's proof: Lemma 2 and

its proof is adopted without alterations, the extension from
states with dyadic entropy values to all states is carried out
more explicitly. The definition of an entropy function for
arbitrary elementary systems and the proof of the extemsivity

of this function is closely followed.

The essential difference between the proof of theorem 2 and the
approach of C P T is caused by the impossibility of using
Caratheodory's principle (L.3’) and Buchdahl and Greve's continuity
assumption (Acc 2) before a phase space, preferably (U, xk o |

is specified. In C P T preference is given to the definition

of extensive internal enegy and deformation coordinate functions

and extensive entropy functions, on the basis of ad hoc suppositions
with respect to the properties of the meters; mnext the maximum
entropy principle is introduced together with continuity assumptions
which imply Caratheodory's principle and the associated continuity
assumption. This choice has consequences for the proof of Theorem 2
in CP T: the first part of lemma 1 cannot be proved and is introduced
as a defining property of the entropymeter. Lemma 3 is replaced
through the 'calibration property' of the entropymeter. In the
further development of C P T the properties of the entropymeter

may be considered as a consequence of connectedness (global) of

the phase space of the eatropymeter.
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5. Internal Energy and Temperature

The content of this paragraph can be characterised as an attempt
to define the concepts 'adiabatic interaction', 'adiabatic isolation,'
‘internal energy,' 'diathermal interaction' and 'thermal equilibrium'
in terms of the 'ground theories.' This conforms to the traditional
approach which tries to define thermodynamical concepts on the basis

of mechanics, e.g. the 'mechanical definition of heat?

InC P T a quite different attitude is explained: adiabatic isolation
and diathermal connection are primitive terms of the theory. It is

a certain preorder relation and a certain equivalence relation on the
set of all states. A definition may be attempted on a level different
from the formal theory, but a satisfactory reduction to mechanics

(or more general: 'ground theories') does not exist in my opinion.
Similar remarks apply to 'internal energy.' It is in my opinion

an irreducible thermodynamic concept. A definition of internal
energy on the basis of the first law, as in E 1, introduces the
concept of an adiabatically isolated system, and the latter concept
cannot be explained in purely mechanical terms. In C P T an internal
energy function is defined on the basis of a primitive 'energetic
isolation.' The extensivity (additivity) of a certain constructed
energy function can be proved, and this procedure which is closely
related to traditional calorimetry, seems to me preferable to the

axiomatic assertion of the additivity of the intermal emergy in E 2.

* Temp 1. There exists a real valued function 0(s) defined for all
states of all simple thermodynamic systems, which is such
that two states sl and 32 of any two systems are in
equilibrium if and only if G(sl) = B(sz). For a fixed
configuration x, 6(x, E) is a strictly increasing

function of E. *
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This axiom has three parts: thermal equilibrium is an equivalence
relation on the set of all pairs of states of simple thermodynamic
systems; there exists a map from the set of equivalence classes

of equal temperature onto a subset of the reals; 08(x, E) is a
strictly increasing function of E at constant x. These three
statements are part of traditional thermodynamics in a Kelvin-Clausius
or Caratheodory approach. I agree with Cooper that the proof of

the existence of a real valued empirical temperature function from

a Zeroth law cannot be carried out without additional suppositions
which make the profitability of the proof questionable.

In C P T the first part of Temp 1 is present as an axiom (C P T 1.2).
The introduction of an empirical temperature function appears not to
be necessary; the maximum entropy principle and associated continuity
assumptions imply the existence of an absolute temperature function
1/T E(BS/BE)x and the convexity upwards of S(E)x’ from which follows
that T(x, E) is a strictly increasing function of E at constant x.

6. Absolute Tegggrature

% Ace 4. 1 & and ¢2 are any two systems which are in thermal
equilibrium in sol, 302, then no other state {sl, 82}
of the composed system {é}, &%} in which each system
is in the same configuration is accessible from the

1 256
state {ao » 8, 3o %

This axiom can be regarded as the maximum entropy principle in a
global form, restricted to a subspace of constant 'configuration'

(only exchange of the energy between the part systems is permitted)
The proof thtt S(E)x is convex upwards and that (QSIIBEI)xl = (aszfaaz)‘z

if Bial) - 6(32) is standard. That the left hand and right hand
derivatives are equal is not proved convincingly: perhaps continuity

of 6(E, x) is supposed.



Similar procedurcs are folluwed in C P T+ The maximuu entropy principle
in C P T is however wore general than Ace &4, and cunscquently more
general conclusionscan be drawn. The equality of che left ~nd
right-hand derivatives is assertcd axiomatically.

7. Absolute Temnerature as an Inteprating Factor

This last paragraph of Cooper's article may be ccasidercd as

an analysis of the topological presuppositicns of tlie Caratheslory
apprcach. The definitiun of a "smooth' system explains in proc_se

terms the existence of igotherms (b) and adiabatie curves or

hypersurfaces (d) and cheir interscctica everywhore (e) and o

differentiability of the gencralised forces with respect to

= e

internal energy E (c¢). The properiy (a) caa be shortened to

"G is simple", alfter the definition of 'simple' in pasagraph 3.

Cue step of the argument of this paragraph requires a furthex

analysis. It sccms to be tacitly cssuned that there exi.

integrating factor for d E + p de which is a function of

A derivation of this statemeant is an important part of i : var. lcodesy
approach. A discusscion of this cerivation and a zeconsticction of

the argument within the [ramzwork of Cooper's axiomatisation would

be desirable.













