

THE TRANSMISSION ELECTRON MICROSCOPE:

ITS EARLY DEVELOPMENT AND RECENT ACHIEVEMENTS

Stan Konings

2

First electron microscope

Ernst Ruska and Max Knoll (1928-1931)

First commercial electron microscope (Siemens 1939)

1-stage "microscope"

2-stage microscope

1929

1933: Das übermikroskop

Magnification: up to 12000x

Driest and Müller: Z. Wiss. Mikroskopie 52, 53-57 (1935)

Krause: Naturwissenschaften 25, 817-825 (1937)

Scanning TEM

1938: The *scanning* transmission electron microscope invented by Manfred von Ardenne

Early adopter in the Netherlands: Willy Burgers

• First to build a "low magnification" electron microscope in the Netherlands : 1935 (Philips Research lab)

• Alpha-gamma transition in iron at high temperature

Jan le Poole: founding father of electron optics in the Netherlands

1941: build his first electron microscope 1957: prof. of electron optics group (Delft) X-ray projection microscope SEM with quadrupole lenses Microprobe x-ray analyzer Compact 1 MV microscope Stigmators Intermediate lens Twin lens configuration TEM / STEM switch

The quest for better resolution

At 75 kV and an opening angle of 20 mrad: R = 264 pmAt 3000 kV and an opening angle of 20 mrad: R = 20 pm

3 MV transmission electron microscope Osaka

Lens aberations limit spatial resolution

Aberation correction for TEM and STEM

Hexapole lenses for spherical aberation correction

Dodecapole lens for chromatic aberation correction

STEM

Aberation-corrected TEM and STEM show the atomic arrangement at high quality

Grab all signals!

Energy-dispersive X-ray spectroscopy (EDX)

Most important components for mapping at *atomic level*

- Silicon Drift Detector
- High brightness gun (X-FEG)
- Probe corrector

(Cs corrector for STEM imaging)

EDX of several perovskite materials

Raw data (top) averaged map (lower left) and simulation (lower right)

A.J. D'Alfonso et al. PRB 81 (2010)

Trend in X-ray microanalysis and STEM resolution over the last 60 years

In-situ TEM

Environmental TEM: gas + heat

Differential pumping systemNanoreactor with thin electron tranparent windowsGas flow through microscopeGas flow integrated on holder

Environmental TEM: tool for catalysis

Catalysts are often in the form of nanoparticles (1-10 nm)

- Structure of metal species is non uniform
- Metal support interaction
- Deactivation due to coalescence
- Where are the active sites? the role of defects (vacancies, dislocations), steps and edges

Typical gases: $H_{2,} O_{2,} H_2 O$, CO, CO_{2,} $C_2 H_2$, CH₄ Typical temperatures: 500-800 °C

Nanoparticles change shape under the influence of gas

Uchiyama et al. Angew. Chem. (2011)

CO oxidation by gold nanoparticles on CeO_2

Growth of carbon nanotubes

Nikkel catalysts with CH_4/H_2 @ 2.1 mbar and heated to 536 $^\circ\text{C}$ Time scale 2 frames/sec

Helveg et al. Nature, 427, 426 (2004)

Thank you !

